PD -95486
Benefits
IRF1407SPbF IRF1407LPbF
HEXFET® Power MOSFET
D
Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free
G
VDSS = 75V RDS(on) = 0.0078Ω
S
Description
Advanced HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.
ID = 100A
The D2Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The D2Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application. The through-hole version (IRF1407L) is available for lowprofile applications.
D2Pak IRF1407S
TO-262 IRF1407L
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C ID @ TC = 100°C IDM PD @TA = 25°C PD @TC = 25°C VGS EAS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds
Max.
100 70 520 3.8 200 1.3 ± 20 390 See Fig.12a, 12b, 15, 16 4.6 -55 to + 175 300 (1.6mm from case )
Units
A W W W/°C V mJ A mJ V/ns °C
Thermal Resistance
Parameter
RθJC RθJA Junction-to-Case Junction-to-Ambient(PCB Mounted,steady-state)**
Typ.
––– –––
Max.
0.75 40
Units
°C/W
**When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
www.irf.com
1
06/30/04
IRF1407S/LPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Coss Coss Coss eff.
Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance
Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time
Min. 75 ––– ––– 2.0 74 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
Typ. ––– 0.09 ––– ––– ––– ––– ––– ––– ––– 160 35 54 11 150 150 140 4.5 7.5 5600 890 190 5800 560 1100
Max. ––– ––– 0.0078 4.0 ––– 20 250 200 -200 250 52 81 ––– ––– ––– ––– –––
Units V V/°C Ω V S µA nA
nC
ns
nH ––– ––– ––– ––– ––– ––– –––
pF
Conditions VGS = 0V, ID = 250µA Reference to 25°C, ID = 1mA VGS = 10V, ID = 78A VDS = 10V, ID = 250µA VDS = 25V, ID = 78A VDS = 75V, VGS = 0V VDS = 60V, VGS = 0V, TJ = 150°C VGS = 20V VGS = -20V ID = 78A VDS = 60V VGS = 10V VDD = 38V ID = 78A RG = 2.5 Ω VGS = 10V D Between lead, 6mm (0.25in.) G from package and center of die contact S VGS = 0V VDS = 25V ƒ = 1.0KHz, See Fig. 5 VGS = 0V, VDS = 1.0V, ƒ = 1.0KHz VGS = 0V, VDS = 60V, ƒ = 1.0KHz VGS = 0V, VDS = 0V to 60V
Source-Drain Ratings and Characteristics
Min. Typ. Max. Units IS
ISM
VSD trr Qrr ton Notes:
Conditions D MOSFET symbol ––– ––– 100 showing the A G integral reverse ––– ––– 520 S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 78A, VGS = 0V ––– 110 170 ns TJ = 25°C, IF = 78A ––– 390 590 nC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
Starting TJ = 25°C, L = 0.13mH
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
RG = 25Ω, IAS = 78A. (See Figure 12). ISD ≤ 78A, di/dt ≤ 320A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C Pulse width ≤ 400µs; duty cycle ≤ 2%.
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
Uses IRF1407 data and test conditions.
2
www.irf.com
IRF1407S/LPbF
1000
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
1000
ID, Drain-to-Source Current (A)
100
ID, Drain-to-Source Current (A)
100
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
4.5V
4.5V
10
10
20µs PULSE WIDTH Tj = 25°C
1 0.1 1 10 100 1 0.1 1
20µs PULSE WIDTH Tj = 175°C
10 100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000.00
3.0
I D = 130A
ID, Drain-to-Source Current (Α )
T J = 25°C
2.5
RDS(on) , Drain-to-Source On Resistance
TJ = 175°C
2.0
100.00
(Normalized)
1.5
1.0
0.5
10.00 3.0 5.0 7.0
VDS = 15V 20µs PULSE WIDTH
9.0 11.0 13.0
V GS = 10V
0.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
VGS, Gate-to-Source Voltage (V)
TJ, Junction Temperature
(° C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRF1407S/LPbF
100000
15
VGS = 0V, f = 1 MHZ Ciss = C + Cgd, C gs ds SHORTED Crss = C gd Coss = C + C ds gd
VGS , Gate-to-Source Voltage (V)
ID = 78A
VDS = 60V VDS = 37V VDS = 15V
12
C, Capacitance(pF)
10000
Ciss
9
1000
Coss
6
3
Crss
100 1 10 100
0 0 40 80 120 160 200
VDS, Drain-to-Source Voltage (V)
QG, Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
1000.00
10000 OPERATION IN THIS AREA LIMITED BY R DS(on)
100.00
T J = 175°C
10.00 T J = 25°C 1.00 VGS = 0V 0.10 0.0 1.0 2.0 3.0 VSD, Source-toDrain Voltage (V)
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
100 100µsec
10 Tc = 25°C Tj = 175°C Single Pulse 1 1 10
1msec
10msec 100 1000
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRF1407S/LPbF
120
LIMITED BY PACKAGE
100
VDS VGS RG
RD
D.U.T.
+
80
-VDD
I D , Drain Current (A)
10V
60
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
40
Fig 10a. Switching Time Test Circuit
VDS 90%
20
0 25 50 75 100 125 150 175
TC , Case Temperature
( °C)
Fig 9. Maximum Drain Current Vs. Case Temperature
10% VGS
td(on) tr t d(off) tf
Fig 10b. Switching Time Waveforms
1
(Z thJC )
D = 0.50
0.20
Thermal Response
0.1
0.10 P DM t1 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = 2. Peak T t1/ t 2 +TC 1 t2
0.05
J = P DM x Z thJC
0.01 0.00001
0.0001
0.001
0.01
0.1
t 1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF1407S/LPbF
15V
650
ID TOP 32A 55A 78A
RG
20V
D.U.T
IAS tp
EAS , Single Pulse Avalanche Energy (mJ)
VDS
L
DRIVER
520
BOTTOM
+ V - DD
390
A
0.01Ω
260
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS tp
130
0 25 50 75 100 125 150 175
Starting T , Junction Temperature J
(° C)
I AS
Fig 12b. Unclamped Inductive Waveforms
QG
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
10 V
QGS VG QGD
VGS(th) Gate threshold Voltage (V)
3.5
3.0
Charge
ID = 250µA
2.5
Fig 13a. Basic Gate Charge Waveform
Current Regulator Same Type as D.U.T.
50KΩ 12V .2µF .3µF
2.0
D.U.T. VGS
3mA
+ V - DS
1.5 -75 -50 -25 0 25 50 75 100 125 150 175 200
T J , Temperature ( °C )
IG ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
Fig 14. Threshold Voltage Vs. Temperature
6
www.irf.com
IRF1407S/LPbF
1000
Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses
Avalanche Current (A)
100
0.01
0.05
10
0.10
1 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
400
EAR , Avalanche Energy (mJ)
TOP Single Pulse BOTTOM 10% Duty Cycle ID = 78A
300
200
100
0 25 50 75 100 125 150
Starting T J , Junction Temperature (°C)
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). t av = Average time in avalanche. 175 D = Duty cycle in avalanche = t av ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 16. Maximum Avalanche Energy Vs. Temperature
www.irf.com
7
IRF1407S/LPbF
Peak Diode Recovery dv/dt Test Circuit
D.U.T*
+
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
-
+
RG V GS • dv/dt controlled by RG • ISD controlled by Duty Factor "D" • D.U.T. - Device Under Test
+ V DD
*
Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive P.W. Period D=
P.W. Period
[VGS=10V ] ***
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
[VDD]
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple ≤ 5%
[ISD]
*** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 17. For N-channel HEXFET® power MOSFETs
8
www.irf.com
IRF1407S/LPbF
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMB LED ON WW 02, 2000 IN T HE AS S EMB LY L INE "L" Note: "P" in assembly line pos ition indicates "Lead-Free" INT ERNAT IONAL RECT IFIER LOGO AS SEMB LY LOT CODE PART NUMB E R F530S DAT E CODE YEAR 0 = 2000 WEEK 02 L INE L
OR
INT ERNAT IONAL RE CT IF IER LOGO AS SE MB LY LOT CODE PART NUMBER F530S DAT E CODE P = DES IGNAT E S LE AD-F RE E PRODUCT (OPT IONAL) YEAR 0 = 2000 WEE K 02 A = ASS EMBLY SIT E CODE
www.irf.com
9
IRF1407S/LPbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL 3103L LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS S EMBL Y LINE "C" Note: "P" in as s embly line pos ition indicates "Lead-Free" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER
DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C
OR
INT ERNAT IONAL RE CT IFIER LOGO PART NU MBER DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YE AR 7 = 1997 WEE K 19 A = AS S EMBLY S IT E CODE
AS S E MBLY LOT CODE
10
www.irf.com
IRF1407S/LPbF
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153)
1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135)
F EED DIRECTION 1.85 (.073)
1.65 (.065)
11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601)
24.30 (.957) 23.90 (.941)
TRL
10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178)
FEED DIRECTION
13.50 (.532) 12.80 (.504)
27.40 (1.079) 23.90 (.941)
4
330.00 (14.173) MAX.
60.00 (2.362) MIN.
NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039) 24.40 (.961)
30.40 (1.197) MAX. 4
3
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.06/04
www.irf.com
11
Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/