0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF2204

IRF2204

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRF2204 - AUTOMOTIVE MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRF2204 数据手册
PD - 94434 AUTOMOTIVE MOSFET IRF2204 Typical Applications ● ● HEXFET® Power MOSFET D Electric Power Steering 14 Volts Automotive Electrical Systems Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax VDSS = 40V G S Features ● ● ● ● ● ● RDS(on) = 3.6mΩ ID = 210A† Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. TO-220AB Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS IAR EAR TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current  Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy‚ Avalanche Current Repetitive Avalanche Energy‡ Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw Max. 210† 150† 850 330 2.2 ± 20 460 See Fig.12a, 12b, 15, 16 -55 to + 175 300 (1.6mm from case ) 10 lbf•in (1.1N•m) Units A W W/°C V mJ A mJ °C Thermal Resistance Parameter RθJC RθCS RθJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Typ. ––– 0.50 ––– Max. 0.45 ––– 62 Units °C/W www.irf.com 1 08/07/02 IRF2204 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Coss Coss Coss eff. Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance … Min. 40 ––– ––– 2.0 120 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.041 3.0 ––– ––– ––– ––– ––– ––– 130 35 39 15 140 62 110 4.5 7.5 5890 1570 130 8000 1370 2380 Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 3.6 mΩ VGS = 10V, ID = 130A „ 4.0 V VDS = 10V, ID = 250µA ––– S VDS = 10V, ID = 130A 20 VDS = 40V, VGS = 0V µA 250 VDS = 32V, VGS = 0V, TJ = 150°C 200 VGS = 20V nA -200 VGS = -20V 200 ID = 130A 52 nC VDS = 32V 59 VGS = 10V„ ––– VDD = 20V ––– ID = 130A ns ––– RG = 2.5Ω ––– VGS = 10V „ D Between lead, ––– 6mm (0.25in.) nH G from package ––– and center of die contact S ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 32V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 32V Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)  Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol ––– ––– 210† showing the A G integral reverse ––– ––– 850 S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 130A, VGS = 0V „ ––– 68 100 ns TJ = 25°C, IF = 130A ––– 120 180 nC di/dt = 100A/µs „ Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 2 www.irf.com IRF2204 10000 TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 10000 TOP I D, Drain-to-Source Current (A) 1000 BOTTOM 1000 I D, Drain-to-Source Current (A) BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 100 4.5V 4.5V 10 10 20µs PULSE WIDTH T J= 25 ° C 1 0.1 1 10 100 20µs PULSE WIDTH T J= 175 ° C 1 0.1 1 10 100 V DS Drain-to-Source Voltage (V) , V DS Drain-to-Source Voltage (V) , Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000.00 2.5 I D = 210A ID , Drain-to-Source Current (Α ) T J = 175°C 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) 1.5 100.00 T J = 25°C 1.0 0.5 10.00 4.0 5.0 6.0 VDS = 25V 20µs PULSE WIDTH 7.0 8.0 9.0 10.0 V GS = 10V 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 VGS, Gate-to-Source Voltage (V) TJ , Junction Temperature ( ° C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com 3 IRF2204 100000 VGS = 0V, f = 1 MHZ Ciss = C + Cgd, C gs ds SHORTED Crss = C gd Coss = C + C ds gd 12 I D = 130A VDS = 32V VDS = 20V 10 10000 Ciss Coss 1000 VGS , Gate-to-Source Voltage (V) C, Capacitance(pF) 8 6 Crss 100 4 2 10 1 10 100 0 0 30 60 90 120 150 VDS, Drain-to-Source Voltage (V) QG, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000 10000 OPERATION IN THIS AREA LIMITED BY R DS(on) TJ = 175 ° C 100 ID, Drain-to-Source Current (A) 1000 I SD , Reverse Drain Current (A) 10 100 100µsec 1msec T J= 25 ° C 1 10 Tc = 25°C Tj = 175°C Single Pulse 1 1 10 VDS , Drain-toSource Voltage (V) 10msec V GS = 0 V 0.1 0.0 0.5 1.0 1.5 2.0 2.5 100 V SD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRF2204 250 LIMITED BY PACKAGE VDS VGS RG RD 200 D.U.T. + ID , Drain Current (A) -VDD 150 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 100 Fig 10a. Switching Time Test Circuit 50 VDS 90% 0 25 50 75 100 125 150 175 TC , Case Temperature ( °C) Fig 9. Maximum Drain Current Vs. Case Temperature 10% VGS td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms 1 (Z thJC ) D = 0.50 0.1 0.20 0.10 Thermal Response 0.05 0.02 0.01 0.01 SINGLE PULSE (THERMAL RESPONSE) P DM t1 t2 Notes: 1. Duty factor D = 2. Peak T t1 / t 2 +TC 1 J = P DM x Z thJC 0.001 0.00001 0.0001 0.001 0.01 0.1 t 1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF2204 900 15V TOP 750 ID 52A 91A 130A EAS , Single Pulse Avalanche Energy (mJ) VDS L DRIVER 600 BOTTOM RG 20V D.U.T IAS tp + V - DD A 450 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp 300 150 0 25 50 75 100 125 150 175 Starting Tj, Junction Temperature ( ° C) I AS Fig 12b. Unclamped Inductive Waveforms QG Fig 12c. Maximum Avalanche Energy Vs. Drain Current 10 V QGS VG QGD VGS(th) Gate threshold Voltage (V) 4.0 3.5 3.0 Charge ID = 250µA 2.5 Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 2.0 50KΩ 12V .2µF .3µF 1.5 D.U.T. VGS 3mA + V - DS 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage Vs. Temperature 6 www.irf.com IRF2204 1000 Duty Cycle = Single Pulse 0.01 Avalanche Current (A) 100 0.05 0.10 10 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 1 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 500 EAR , Avalanche Energy (mJ) 400 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 210A 300 200 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). t av = Average time in avalanche. 175 D = Duty cycle in avalanche = t av ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com 7 IRF2204 Peak Diode Recovery dv/dt Test Circuit D.U.T* + ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer ‚ - „ +  RG V GS • dv/dt controlled by RG • ISD controlled by Duty Factor "D" • D.U.T. - Device Under Test + V DD * Reverse Polarity of D.U.T for P-Channel Driver Gate Drive P.W. Period D= P.W. Period [VGS=10V ] *** D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt [VDD] Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% [ISD] *** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 17. For N-channel HEXFET® power MOSFETs 8 www.irf.com IRF2204 TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 3 LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 3X 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) M BAM 3X 0.55 (.022) 0.46 (.018) 0.36 (.014) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 2.92 (.115) 2.64 (.104) 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information EXAMPLE : THIS IS AN IRF1010 WITH ASSEMBLY LOT CODE 9B1M A INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER IRF1010 9246 9B 1M DATE CODE (YYWW) YY = YEAR WW = WEEK Notes:  Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). ‚ Starting TJ = 25°C, L = 0.06mH RG = 25Ω, IAS = 130A. (See Figure 12). ƒ ISD ≤ 130A, di/dt ≤ 170A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. „ Pulse width ≤ 400µs; duty cycle ≤ 2%. … Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . † Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A. ‡ Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/02 www.irf.com 9
IRF2204 价格&库存

很抱歉,暂时无法提供与“IRF2204”相匹配的价格&库存,您可以联系我们找货

免费人工找货