0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF3007PBF

IRF3007PBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRF3007PBF - HEXFET® Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRF3007PBF 数据手册
PD - 95618 AUTOMOTIVE MOSFET Typical Applications l l IRF3007PbF HEXFET® Power MOSFET D 42 Volts Automotive Electrical Systems Lead-Free Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Automotive [Q101] Qualified Features l l l l l VDSS = 75V RDS(on) = 0.0126Ω G S ID = 75A Description Specifically designed for Automotive applications, this design of HEXFET® Power MOSFETs utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. TO-220AB Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS EAS EAS (6 sigma) IAR EAR TJ TSTG Continuous Drain Current, VGS @ 10V (Silicon limited) Continuous Drain Current, VGS @ 10V (See Fig.9) Continuous Drain Current, VGS @ 10V (Package limited) Pulsed Drain Current  Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy‚ Single Pulse Avalanche Energy Tested Value‡ Avalanche Current Repetitive Avalanche Energy† Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw Max. 80 56 75 320 200 1.3 ± 20 280 946 See Fig.12a, 12b, 15, 16 -55 to + 175 Units A W W/°C V mJ A mJ °C 300 (1.6mm from case ) 1.1 (10) N•m (lbf•in) Thermal Resistance Parameter RθJC RθCS RθJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Typ. ––– 0.50 ––– Max. 0.74 ––– 62 Units °C/W www.irf.com 1 8/2/04 IRF3007PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Coss Coss Coss eff. Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance … Min. 75 ––– ––– 2.0 180 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.084 10.5 ––– ––– ––– ––– ––– ––– 89 21 30 12 80 55 49 4.5 7.5 3270 520 78 3500 340 640 Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 12.6 mΩ VGS = 10V, ID = 48A „ 4.0 V VDS = 10V, ID = 250µA ––– S VDS = 25V, ID = 48A 20 VDS = 75V, VGS = 0V µA 250 VDS = 60V, VGS = 0V, TJ = 150°C 200 VGS = 20V nA -200 VGS = -20V 130 ID = 48A 32 nC VDS = 60V 45 VGS = 10V ––– VDD = 38V ––– ID = 48A ns ––– RG = 4.6Ω ––– VGS = 10V „ D Between lead, ––– 6mm (0.25in.) nH G from package ––– and center of die contact S ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 60V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 60V Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton Notes: Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)  Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol ––– ––– 80† showing the A G integral reverse ––– ––– 320 S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 48A, VGS = 0V „ ––– 85 130 ns TJ = 25°C, IF = 48A, VDD = 38V ––– 280 420 nC di/dt = 100A/µs „ Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  Repetitive rating; pulse width limited by … Coss eff. is a fixed capacitance that gives the same charging time max. junction temperature. (See fig. 11). as Coss while VDS is rising from 0 to 80% VDSS . ‚ Starting TJ = 25°C, L = 0.24mH † Limited by T Jmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 48A, VGS=10V (See Figure 12). avalanche performance. ƒ ISD ≤ 48A, di/dt ≤ 330A/µs, VDD ≤ V(BR)DSS, ‡ This value determined from sample failure population. 100% TJ ≤ 175°C tested to this value in production. „ Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF3007PbF 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 1000 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 4.5V 10 10 4.5V 20µs PULSE WIDTH Tj = 25°C 0.1 1 10 100 1 1 0.1 1 20µs PULSE WIDTH Tj = 175°C 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 100 Gfs, Forward Transconductance (S) ID, Drain-to-Source Current ( A) T J = 175°C 80 100 T J = 175°C 60 T J = 25°C 40 10 T J = 25°C 20 1 4.0 5.0 6.0 VDS = 25V 20µs PULSE WIDTH 7.0 8.0 9.0 VDS = 25V 20µs PULSE WIDTH 0 40 80 120 160 0 ID, Drain-to-Source Current (A) VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance Vs. Drain Current www.irf.com 3 IRF3007PbF 6000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd , C ds SHORTED Crss Coss = Cgd = C + Cgd ds 20 ID= 48A VGS , Gate-to-Source Voltage (V) 5000 16 VDS= 60V VDS= 38V VDS= 15V C, Capacitance (pF) 4000 12 3000 Ciss 8 2000 4 1000 0 1 10 Coss Crss 100 0 0 40 80 120 160 Q G Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000.0 10000 OPERATION IN THIS AREA LIMITED BY RDS(on) ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 100.0 TJ = 175°C 10.0 100 100µsec 10 1msec 10msec 1.0 T J = 25°C 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1 VGS = 0V 1.4 1.6 1.8 0.1 Tc = 25°C Tj = 175°C Single Pulse 1 10 100 1000 VSD, Source-toDrain Voltage (V) VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRF3007PbF 80 3.0 LIMITED BY PACKAGE 2.5 I D = 80A RDS(on) , Drain-to-Source On Resistance 60 ID , Drain Current (A) 2.0 40 (Normalized) 1.5 1.0 20 0.5 0 25 50 75 100 125 150 175 0.0 -60 -40 -20 0 20 40 60 80 V GS = 10V 100 120 140 160 180 TC , Case Temperature ( °C) TJ, Junction Temperature ( °C) Fig 9. Maximum Drain Current Vs. Case Temperature Fig 10. Normalized On-Resistance Vs. Temperature 1 (Z thJC ) D = 0.50 0.20 Thermal Response 0.1 0.10 0.05 SINGLE PULSE (THERMAL RESPONSE) P DM t1 t2 Notes: 1. Duty factor D = 2. Peak T t1/ t 2 +T C 0.1 J = P DM x Z thJC 0.02 0.01 0.01 0.00001 0.0001 0.001 0.01 t 1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF3007PbF 600 15V ID TOP 20A 34A 48A 500 EAS , Single Pulse Avalanche Energy (mJ) VDS L DRIVER 400 BOTTOM RG 20V VGS D.U.T IAS tp + V - DD A 300 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp 200 100 0 25 50 75 100 125 150 175 Starting T , J Junction Temperature ( °C) I AS Fig 12b. Unclamped Inductive Waveforms QG Fig 12c. Maximum Avalanche Energy Vs. Drain Current 10 V QGS QGD -VGS(th) Gate threshold Voltage (V) 4.0 VG ID = 250µA 3.0 Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 2.0 50KΩ 12V .2µF .3µF D.U.T. VGS 3mA + V - DS 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage Vs. Temperature 6 www.irf.com IRF3007PbF 1000 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax Avalanche Current (A) 100 0.01 0.05 0.10 10 1 0.1 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 300 EAR , Avalanche Energy (mJ) T OP Single Pulse BOTT OM 50% Duty Cycle ID = 48A 200 100 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com 7 IRF3007PbF D.U.T Driver Gate Drive P.W. Period VGS=10V + P.W. Period D= ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs RD V DS VGS RG 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % D.U.T. + -VDD Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRF3007PbF TO-220AB Package Outline 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) Dimensions are shown in millimeters (inches) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 3 LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 21- GATE DRAIN 1- GATE 32- DRAINSOURCE 2- COLLECTOR 3- SOURCE 3- EMITTER 4 - DRAIN LEAD ASSIGNMENTS HEXFET 14.09 (.555) 13.47 (.530) 4- DRAIN 4.06 (.160) 3.55 (.140) 4- COLLECTOR 3X 3X 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) M BAM 3X 0.55 (.022) 0.46 (.018) 0.36 (.014) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 2.92 (.115) 2.64 (.104) 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMPL E : T HIS IS AN IR F 1010 LOT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y LINE "C" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R Note: "P" in assembly line position indicates "Lead-Free" DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C TO-220AB package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/04 www.irf.com 9 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/
IRF3007PBF 价格&库存

很抱歉,暂时无法提供与“IRF3007PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货