0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF3717

IRF3717

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRF3717 - HEXFETPower MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRF3717 数据手册
PD - 95843 IRF3717 HEXFET® Power MOSFET Applications l Synchronous MOSFET for Notebook Processor Power l Synchronous Rectifier MOSFET for Isolated DC-DC Converters in Networking Systems VDSS 20V 4.4m:@VGS = 10V A A D D D D RDS(on) max ID 20A S S 1 2 3 4 8 7 Benefits l Ultra-Low Gate Impedance l Very Low RDS(on) l Fully Characterized Avalanche Voltage and Current S G 6 5 Top View SO-8 Absolute Maximum Ratings Parameter VDS VGS ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C PD @TA = 70°C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Max. 20 ± 20 20 16 160 2.5 1.6 0.02 -55 to + 150 Units V c A W W/°C °C Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Thermal Resistance Parameter RθJL RθJA Junction-to-Drain Lead Junction-to-Ambient Typ. ––– ––– Max. 20 50 Units °C/W f Notes  through „ are on page 10 www.irf.com 2/20/04 1 IRF3717 Static @ TJ = 25°C (unless otherwise specified) Parameter BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th)/∆TJ IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss td(on) tr td(off) tf Ciss Coss Crss Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Parameter Single Pulse Avalanche Energy Avalanche Current Min. Typ. Max. Units 20 ––– ––– ––– 1.55 ––– ––– ––– ––– ––– 57 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.014 3.7 4.8 2.0 -5.4 ––– ––– ––– ––– ––– 22 6.8 2.2 7.3 5.7 9.5 12 12 14 15 6.0 2890 930 430 ––– ––– 4.4 5.7 2.45 ––– 1.0 150 100 -100 ––– 33 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– pF nC nC V Conditions VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 20A V VGS = 4.5V, ID = 16A VDS = VGS, ID = 250µA e e mV/°C µA VDS = 16V, VGS = 0V nA S VDS = 16V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 10V, ID = 16A VDS = 10V VGS = 4.5V ID = 16A See Fig. 16 VDS = 10V, VGS = 0V VDD = 10V, VGS = 4.5V ID = 16A Clamped Inductive Load VGS = 0V VDS = 10V ƒ = 1.0MHz Max. 32 16 Units mJ A ns Avalanche Characteristics EAS IAR ™ d Diode Characteristics Parameter IS ISM VSD trr Qrr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– 22 13 20 A 160 1.0 32 19 V ns nC Conditions MOSFET symbol showing the integral reverse G S D Ù p-n junction diode. TJ = 25°C, IS = 16A, VGS = 0V TJ = 25°C, IF = 16A, VDD = 10V di/dt = 100A/µs e e 2 www.irf.com IRF3717 1000 TOP VGS 10V 4.5V 3.8V 3.5V 3.3V 3.0V 2.8V 2.5V 1000 TOP VGS 10V 4.5V 3.8V 3.5V 3.3V 3.0V 2.8V 2.5V ID, Drain-to-Source Current (A) 100 BOTTOM ID, Drain-to-Source Current (A) 100 BOTTOM 10 10 2.5V 20µs PULSE WIDTH Tj = 150°C 0.1 1 10 100 1 20µs PULSE WIDTH Tj = 25°C 2.5V 0.1 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) 1 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 1.5 100 10 T J = 150°C RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (Α) ID = 20A VGS = 10V 1.0 1 T J = 25°C VDS = 10V 20µs PULSE WIDTH 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.1 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 VGS, Gate-to-Source Voltage (V) T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature www.irf.com 3 IRF3717 100000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd 6.0 ID=16A VGS, Gate-to-Source Voltage (V) 5.0 4.0 3.0 2.0 1.0 0.0 VDS= 16V VDS= 10V C, Capacitance(pF) 10000 Ciss 1000 Coss Crss 100 1 10 100 0 5 10 15 20 25 30 VDS, Drain-to-Source Voltage (V) QG Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000.00 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100.00 10.00 T J = 150°C ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 T J = 25°C 1.00 10 T A = 25°C 100µsec 1msec 10msec 1 10 100 0.10 0.0 0.2 0.4 0.6 0.8 1.0 VGS = 0V 1.2 1.4 Tj = 150°C Single Pulse 1 0 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRF3717 20 VGS(th) Gate threshold Voltage (V) 2.5 ID, Drain Current (A) 15 2.0 10 ID = 250µA 1.5 5 0 25 50 75 100 125 150 T A , Ambient Temperature (°C) 1.0 -75 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Ambient Temperature Fig 10. Threshold Voltage vs. Temperature 100 D = 0.50 Thermal Response ( Z thJA ) 10 0.20 0.10 0.05 0.02 0.01 τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ1 τ2 τ3 τ4 τ4 1 Ri (°C/W) 1.4174 11.3607 21.8639 15.3721 P DM t1 0.000277 0.103855 1.362000 39.60000 τi (sec) 0.1 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi/Ri Ci i/Ri t2 Notes: 1. Duty factor D = t1/ t 2 2. Peak T J = P DM x Z thJA 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 +T A 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 IRF3717 150 EAS , Single Pulse Avalanche Energy (mJ) 15V ID 6.5A 7.5A BOTTOM 16A TOP 100 VDS L DRIVER RG 20V VGS D.U.T IAS tp + V - DD A 0.01Ω 50 Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 12c. Maximum Avalanche Energy vs. Drain Current I AS LD VDS Fig 12b. Unclamped Inductive Waveforms + VDD D.U.T Current Regulator Same Type as D.U.T. VGS Pulse Width < 1µs Duty Factor < 0.1% 50KΩ 12V .2µF .3µF Fig 14a. Switching Time Test Circuit D.U.T. + V - DS 90% VDS VGS 3mA 10% IG ID VGS td(on) tr td(off) tf Current Sampling Resistors Fig 13. Gate Charge Test Circuit Fig 14b. Switching Time Waveforms 6 www.irf.com IRF3717 D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD VDD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Vgs Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 16. Gate Charge Waveform www.irf.com 7 IRF3717 Power MOSFET Selection for Non-Isolated DC/DC Converters Control FET Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the Rds(on) of the MOSFET, but these conduction losses are only about one half of the total losses. Power losses in the control switch Q1 are given by; Synchronous FET The power loss equation for Q2 is approximated by; * Ploss = Pconduction + P + Poutput drive Ploss = Irms × Rds(on) + ( g × Vg × f ) Q ( 2 ) Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput This can be expanded and approximated by; ⎛Q ⎞ + ⎜ oss × Vin × f + (Qrr × Vin × f ) ⎝2 ⎠ *dissipated primarily in Q1. For the synchronous MOSFET Q2, Rds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Qoss and reverse recovery charge Qrr both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs’ susceptibility to Cdv/dt turn on. The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and Vin. As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current . The ratio of Qgd/Qgs1 must be minimized to reduce the potential for Cdv/dt turn on. Ploss = (Irms 2 × Rds(on ) ) ⎛ Qgs 2 Qgd ⎞⎛ ⎞ +⎜I × × Vin × f ⎟ + ⎜ I × × Vin × f ⎟ ig ig ⎝ ⎠⎝ ⎠ + (Qg × Vg × f ) + ⎛ Qoss × Vin × f ⎞ ⎝2 ⎠ This simplified loss equation includes the terms Qgs2 and Qoss which are new to Power MOSFET data sheets. Qgs2 is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Qgs1 and Qgs2, can be seen from Fig 16. Qgs2 indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to Idmax at which time the drain voltage begins to change. Minimizing Qgs2 is a critical factor in reducing switching losses in Q1. Qoss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Qoss is formed by the parallel combination of the voltage dependant (nonlinear) capacitance’s Cds and Cdg when multiplied by the power supply input buss voltage. 8 Figure A: Qoss Characteristic www.irf.com IRF3717 SO-8 Package Details Dimensions are shown in millimeters (inches) D A 5 B DIM A b INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 A1 .0040 6 E 8 7 6 5 H 0.25 [.010] A c D E e e1 H 1 2 3 4 .050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8° 1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8° 6X e K L y e1 A K x 45° C 0.10 [.004] y 8X c 8X b 0.25 [.010] A1 CAB 8X L 7 NOT ES : 1. DIMENS IONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENS IONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUSIONS . MOLD PROTRUS IONS NOT TO EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUSIONS . MOLD PROTRUS IONS NOT TO EXCEED 0.25 [.010]. 7 DIMENS ION IS T HE LENGT H OF LEAD FOR SOLDERING TO A S UBST RAT E. 3X 1.27 [.050] 6.46 [.255] F OOTPRINT 8X 0.72 [.028] 8X 1.78 [.070] SO-8 Part Marking EXAMPLE: THIS IS AN IRF7101 (MOS FET ) DATE CODE (YWW) Y = LAS T DIGIT OF THE YEAR WW = WEEK LOT CODE PART NUMBER 9 INT ERNAT IONAL RECTIFIER LOGO www.irf.com YWW XXXX F7101 IRF3717 SO-8 Tape and Reel Dimensions are shown in millimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Notes:  Repetitive rating; pulse width limited by max. junction temperature. ‚ Starting TJ = 25°C, L = 0.26mH, RG = 25Ω, IAS = 16A. ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%. „ When mounted on 1 inch square copper board. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 2/04 10 www.irf.com
IRF3717 价格&库存

很抱歉,暂时无法提供与“IRF3717”相匹配的价格&库存,您可以联系我们找货

免费人工找货