0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF4104L

IRF4104L

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRF4104L - AUTOMOTIVE MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRF4104L 数据手册
PD - 94639A AUTOMOTIVE MOSFET IRF4104 IRF4104S IRF4104L HEXFET® Power MOSFET D Features ● ● ● ● ● Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax G VDSS = 40V RDS(on) = 5.5mΩ S Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. ID = 75A Absolute Maximum Ratings Parameter TO-220AB IRF4104 D2Pak IRF4104S Max. 120 84 75 470 140 TO-262 IRF4104L Units A ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package limited) Pulsed Drain Current IDM ™ PD @TC = 25°C Power Dissipation Linear Derating Factor VGS Gate-to-Source Voltage EAS (Thermally limited) Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value EAS (Tested ) W W/°C V mJ A mJ d 0.95 ± 20 IAR EAR TJ TSTG Avalanche Current Ù h 120 220 See Fig.12a, 12b, 15, 16 -55 to + 175 Repetitive Avalanche Energy Operating Junction and Storage Temperature Range g i °C 300 (1.6mm from case ) 10 lbf in (1.1N m) Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw Thermal Resistance Parameter RθJC RθCS RθJA RθJA Junction-to-Case Case-to-Sink, Flat Greased Surface Junction-to-Ambient y y Typ. Max. 1.05 ––– 62 40 Units °C/W i i ––– 0.50 ––– ––– Junction-to-Ambient (PCB Mount) j www.irf.com 1 8/29/03 IRF4104S/L Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Coss Coss Coss eff. Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. Typ. Max. Units 40 ––– ––– 2.0 63 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.032 4.3 ––– ––– ––– ––– ––– ––– 68 21 27 16 130 38 77 4.5 7.5 3000 660 380 2160 560 850 ––– ––– 5.5 4.0 ––– 20 250 200 -200 100 ––– ––– ––– ––– ––– ––– ––– nH ––– ––– ––– ––– ––– ––– ––– pF ns nC nA V Conditions VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 75A e V V µA VDS = VGS, ID = 250µA VDS = 10V, ID = 75A VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V ID = 75A VDS = 32V VGS = 10V VDD = 20V ID = 75A RG = 6.8 Ω VGS = 10V e e Between lead, 6mm (0.25in.) from package and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 32V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 32V f Source-Drain Ratings and Characteristics Parameter IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– 23 6.8 75 A 470 1.3 35 10 V ns nC Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 75A, VGS = 0V TJ = 25°C, IF = 75A, VDD = 20V di/dt = 100A/µs Ù e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 2 www.irf.com IRF4104S/L 1000 TOP 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 1000 TOP ID, Drain-to-Source Current (A) 100 10 ID, Drain-to-Source Current (A) 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 100 4.5V 1 20µs PULSE WIDTH Tj = 25°C 0.1 0.1 1 10 100 10 0.1 1 4.5V 20µs PULSE WIDTH Tj = 175°C 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 120 ID, Drain-to-Source Current ( A) T J = 25°C T J = 175°C 100 Gfs, Forward Transconductance (S) 100 80 60 T J = 25°C TJ = 175°C 10 40 20 0 1 4 6 8 VDS = 15V 20µs PULSE WIDTH 10 12 VDS = 10V 380µs PULSE WIDTH 0 20 40 60 80 100 VGS, Gate-to-Source Voltage (V) ID, Drain-to-Source Current (A) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance Vs. Drain Current www.irf.com 3 IRF4104S/L 5000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd 20 ID= 75A VDS= 32V VDS= 20V 4000 VGS, Gate-to-Source Voltage (V) 16 C, Capacitance (pF) Ciss 3000 12 2000 8 1000 Coss Crss 4 0 1 10 100 0 0 20 40 60 80 100 VDS, Drain-to-Source Voltage (V) QG Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000.0 10000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100.0 T J = 175°C 10.0 T J = 25°C 1.0 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 100 100µsec 10 Tc = 25°C Tj = 175°C Single Pulse 0 1 10 1msec 10msec 100 1000 0.1 0.2 0.6 1.0 VGS = 0V 1.4 1.8 1 VSD, Source-toDrain Voltage (V) VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRF4104S/L 120 LIMITED BY PACKAGE 100 ID , Drain Current (A) 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID = 75A VGS = 10V 80 60 40 20 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) 1.5 1.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 9. Maximum Drain Current Vs. Case Temperature Fig 10. Normalized On-Resistance Vs. Temperature 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 τ1 τ2 Ri (°C/W) τi (sec) 0.371 0.000272 0.337 0.001375 0.337 0.018713 0.01 Ci= τi /Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 0.001 1E-006 1E-005 0.0001 0.001 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF4104S/L 500 EAS, Single Pulse Avalanche Energy (mJ) 15V TOP VDS L DRIVER 400 BOTTOM ID 11A 16A 75A RG 20V VGS D.U.T IAS tp + V - DD 300 A 0.01Ω 200 Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp 100 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature (°C) I AS Fig 12b. Unclamped Inductive Waveforms QG Fig 12c. Maximum Avalanche Energy Vs. Drain Current 10 V QGS VG QGD VGS(th) Gate threshold Voltage (V) 4.0 ID = 250µA 3.0 Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 2.0 50KΩ 12V .2µF .3µF D.U.T. VGS 3mA + V - DS 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage Vs. Temperature 6 www.irf.com IRF4104S/L 1000 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax Avalanche Current (A) 100 0.01 0.05 10 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 140 120 EAR , Avalanche Energy (mJ) TOP Single Pulse BOTTOM 1% Duty Cycle ID = 75A 100 80 60 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com 7 IRF4104S/L Driver Gate Drive D.U.T + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs RD V DS VGS RG 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % D.U.T. + -VDD Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRF4104S/L TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 3 LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) 2.54 (.100) 2X NOTES: 0.93 (.037) 0.69 (.027) M BAM 3X 0.55 (.022) 0.46 (.018) 0.36 (.014) 2.92 (.115) 2.64 (.104) 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN THE AS S EMBLY LINE "C" INTERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C For GB Production EXAMPLE: THIS IS AN IRF1010 L OT CODE 1789 AS S EMBLED ON WW 19, 1997 IN THE AS S E MBLY LINE "C" INTERNATIONAL RECTIFIER LOGO LOT CODE PART NUMBER DATE CODE www.irf.com 9 IRF4104S/L D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 ASS EMBLED ON WW 02, 2000 IN T HE ASS EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER F 530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L PART NUMBER F 530S DAT E CODE For GB Production T HIS IS AN IRF530S WIT H LOT CODE 8024 ASS EMBLED ON WW 02, 2000 IN T HE ASS EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO LOT CODE 10 www.irf.com IRF4104S/L TO-262 Package Outline Dimensions are shown in millimeters (inches) IGBT 1- GATE 2- COLLECTOR TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 ASS EMBLED ON WW 19, 1997 IN THE ASS EMBLY LINE "C" INT ERNATIONAL RECTIFIER LOGO AS SEMBLY LOT CODE PART NUMBER DATE CODE YEAR 7 = 1997 WEEK 19 LINE C www.irf.com 11 IRF4104S/L D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 30.40 (1.197) MAX. 26.40 (1.039) 24.40 (.961) 3 4 … Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive max. junction temperature. (See fig. 11). avalanche performance. ‚ Limited by TJmax, starting TJ = 25°C, L = 0.04mH † This value determined from sample failure population. 100% R G = 25Ω, IAS = 75A, VGS =10V. Part not tested to this value in production. recommended for use above this value. ‡ This is only applied to TO-220AB pakcage. ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%. ˆ This is applied to D2Pak, when mounted on 1" square PCB (FR„ Coss eff. is a fixed capacitance that gives the 4 or G-10 Material). For recommended footprint and soldering same charging time as Coss while VDS is rising techniques refer to application note #AN-994. from 0 to 80% VDSS .  Repetitive rating; pulse width limited by TO-220AB package is not recommended for Surface Mount Application. Notes: Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101]market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/03 12 www.irf.com This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.
IRF4104L 价格&库存

很抱歉,暂时无法提供与“IRF4104L”相匹配的价格&库存,您可以联系我们找货

免费人工找货