0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF4905SPBF

IRF4905SPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRF4905SPBF - HEXFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRF4905SPBF 数据手册
PD - 97034 IRF4905SPbF IRF4905LPbF Features Advanced Process Technology Ultra Low On-Resistance 150°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Some Parameters Are Differrent from IRF4905S Lead-Free HEXFET® Power MOSFET D VDSS = -55V RDS(on) = 20mΩ G S ID = -42A D Description Features of this design are a 150°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in a wide variety of other applications. D G D S G D S D2Pak IRF4905SPbF G D TO-262 IRF4905LPbF S Absolute Maximum Ratings Parameter Gate Drain Max. -70 -44 -42 -280 170 1.3 ± 20 Source Units A ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) IDM Pulsed Drain Current ™ PD @TC = 25°C Power Dissipation Linear Derating Factor VGS EAS (Tested ) IAR EAR TJ TSTG Gate-to-Source Voltage EAS (Thermally limited) Single Pulse Avalanche Energy Avalanche Current W W/°C V mJ A mJ d Single Pulse Avalanche Energy Tested Value Ù h 140 790 See Fig.12a, 12b, 15, 16 -55 to + 150 Repetitive Avalanche Energy Operating Junction and Storage Temperature Range g i °C 300 (1.6mm from case ) 10 lbf in (1.1N m) Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw Thermal Resistance RθJC RθJA Junction-to-Case y y j Parameter Typ. Max. 0.75 40 Units Junction-to-Ambient (PCB Mount, steady state) ij ––– ––– www.irf.com 1 8/5/05 IRF4905S/L Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LS Ciss Coss Crss Coss Coss Coss eff. Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. Typ. Max. Units -55 ––– ––– -2.0 19 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– -0.054 ––– ––– ––– ––– ––– ––– ––– 120 32 53 20 99 51 64 7.5 3500 1250 450 4620 940 1530 ––– ––– 20 -4.0 ––– -25 -200 100 -100 180 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– pF nH ns nC nA V mΩ V S µA Conditions VGS = 0V, ID = -250µA VGS = -10V, ID = -42A VDS = -25V, ID = -42A VDS = -55V, VGS = 0V VDS = -44V, VGS = 0V, TJ = 125°C VGS = -20V VGS = 20V ID = -42A VDS = -44V VGS = -10V VDD = -28V ID = -42A RG = 2.6 Ω VGS = -10V V/°C Reference to 25°C, ID = -1mA e VDS = VGS, ID = -250µA e e Between lead, and center of die contact VGS = 0V VDS = -25V ƒ = 1.0MHz VGS = 0V, VDS = -1.0V, ƒ = 1.0MHz VGS = 0V, VDS = -44V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to -44V f Source-Drain Ratings and Characteristics Parameter IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– 61 150 -42 A -280 -1.3 92 220 V ns nC Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = -42A, VGS = 0V di/dt = -100A/µs Ù Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time e TJ = 25°C, IF = -42A, VDD = -28V e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 2 www.irf.com IRF4905S/L 1000 TOP 1000 -ID, Drain-to-Source Current (A) 100 BOTTOM -ID, Drain-to-Source Current (A) VGS -15V -10V -8.0V -7.0V -6.0V -5.5V -5.0V -4.5V TOP 100 BOTTOM VGS -15V -10V -8.0V -7.0V -6.0V -5.5V -5.0V -4.5V 10 10 -4.5V ≤ 60µs PULSE WIDTH Tj = 150°C 1 0.1 1 10 100 1000 -4.5V 1 0.1 1 ≤ 60µs PULSE WIDTH Tj = 25°C 10 100 1000 -VDS , Drain-to-Source Voltage (V) -VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000.0 40 Gfs, Forward Transconductance (S) TJ = 25°C -ID, Drain-to-Source Current(Α) TJ = 25°C 30 TJ = 150°C 20 100.0 TJ = 150°C 10.0 1.0 VDS = -25V 0.1 3 4 5 6 7 8 9 10 10 VDS = -10V 380µs PULSE WIDTH 0 0 20 40 60 80 -ID, Drain-to-Source Current (A) ≤ 60µs PULSE WIDTH 11 12 13 14 -VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance Vs. Drain Current www.irf.com 3 IRF4905S/L 7000 6000 5000 4000 3000 2000 1000 0 1 10 100 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd 20 -VGS, Gate-to-Source Voltage (V) ID= -42A 16 C, Capacitance (pF) VDS = -44V VDS= -28V VDS= -11V Ciss 12 8 Coss 4 Crss 0 0 40 80 120 160 200 QG Total Gate Charge (nC) -VDS , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000.0 1000 -ID, Drain-to-Source Current (A) -ISD , Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS (on) 100.0 TJ = 150°C 10.0 100 1msec 100µsec 10msec 10 LIMITED BY PACKAGE 1.0 TJ = 25°C DC Tc = 25°C Tj = 150°C Single Pulse 1 0 1 10 100 VGS = 0V 0.1 0.0 0.4 0.8 1.2 1.6 2.0 -VSD , Source-to-Drain Voltage (V) -VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRF4905S/L 80 LIMITED BY PACKAGE 60 RDS(on) , Drain-to-Source On Resistance (Normalized) 2.0 ID = -42A VGS = -10V -ID , Drain Current (A) 1.5 40 1.0 20 0 25 50 75 100 125 150 TC , Case Temperature (°C) 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current Vs. Case Temperature Fig 10. Normalized On-Resistance Vs. Temperature 1 D = 0.50 Thermal Response ( Z thJC ) 0.20 0.1 0.10 0.05 0.02 0.01 τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 0.1165 0.000068 0.3734 0.2608 0.002347 0.014811 τ1 0.01 τ2 Ci= τi/Ri Ci τi/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF4905S/L VDS L 600 EAS, Single Pulse Avalanche Energy (mJ) RG D.U.T IAS -20V DRIVER 0.01Ω VDD A 500 tp ID -17A -30A BOTTOM -42A TOP 400 300 15V 200 Fig 12a. Unclamped Inductive Test Circuit I AS 100 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) tp V(BR)DSS Fig 12b. Unclamped Inductive Waveforms QG Fig 12c. Maximum Avalanche Energy Vs. Drain Current 10V VG 3.6 QGS QGD -VGS(th) Gate threshold Voltage (V) 3.2 Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 2.8 ID = -250µA 50KΩ 12V .2µF .3µF 2.4 VGS -3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 + D.U.T. - VDS 2.0 -75 -50 -25 0 25 50 75 100 125 150 TJ , Temperature ( °C ) Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRF4905S/L 1000 Duty Cycle = Single Pulse 100 Avalanche Current (A) 0.01 0.05 10 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 160 EAR , Avalanche Energy (mJ) 120 TOP Single Pulse BOTTOM 1% Duty Cycle ID = -42A 80 40 0 25 50 75 100 125 Starting TJ , Junction Temperature (°C) Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 150 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com 7 IRF4905S/L Driver Gate Drive D.U.T** + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD ** Reverse Polarity of D.U.T for P-Channel * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for P-Channel HEXFET® Power MOSFETs RD VDS VGS RG VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % D.U.T. + Fig 18a. Switching Time Test Circuit td(on) tr t d(off) tf VGS 10% 90% VDS Fig 18b. Switching Time Waveforms 8 - VDD www.irf.com IRF4905S/L D2Pak Package Outline (Dimensions are shown in millimeters (inches)) D2Pak Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" Note: "P" in assembly line position indicates "Lead-Free" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L OR INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER F530S DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 0 = 2000 WEEK 02 A = AS S EMBLY S IT E CODE www.irf.com 9 IRF4905S/L TO-262 Package Outline (Dimensions are shown in millimeters (inches)) IGBT 1- GATE 2- COLLECTOR 3- EMITTER 4- COLLECTOR TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 AS SEMBLED ON WW 19, 1997 IN T HE AS SEMBLY LINE "C" Note: "P" in ass embly line pos ition indicates "Lead-Free" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C OR INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 7 = 1997 WEEK 19 A = AS SEMBLY SIT E CODE 10 www.irf.com IRF4905S/L D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 30.40 (1.197) MAX. 26.40 (1.039) 24.40 (.961) 3 4 … Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive max. junction temperature. (See fig. 11). avalanche performance. ‚ Limited by TJmax, starting TJ = 25°C, L = 0.16mH † This value determined from sample failure population. 100% RG = 25Ω, IAS = -42A, VGS =-10V. Part not tested to this value in production. recommended for use above this value. ‡ This is applied to D2Pak, when mounted on 1" square PCB (FRƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%. 4 or G-10 Material). For recommended footprint and soldering „ Coss eff. is a fixed capacitance that gives the techniques refer to application note #AN-994. same charging time as Coss while VDS is rising ˆ Rθ is measured at TJ approximately 90°C from 0 to 80% VDSS .  Repetitive rating; pulse width limited by Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. Notes: IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/05 www.irf.com 11
IRF4905SPBF 价格&库存

很抱歉,暂时无法提供与“IRF4905SPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货