0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF6674TRPBF_08

IRF6674TRPBF_08

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRF6674TRPBF_08 - DirectFETPower MOSFET - International Rectifier

  • 详情介绍
  • 数据手册
  • 价格&库存
IRF6674TRPBF_08 数据手册
PD - 97133 IRF6674TRPbF DirectFET™ Power MOSFET ‚ Typical values (unless otherwise specified) RoHS Compliant  l Lead-Free (Qualified up to 260°C Reflow) l Application Specific MOSFETs l Ideal for High Performance Isolated Converter Primary Switch Socket l Optimized for Synchronous Rectification l Low Conduction Losses l High Cdv/dt Immunity l Dual Sided Cooling Compatible  l Compatible with existing Surface Mount Techniques  l VDSS Qg tot VGS Qgd 8.3nC RDS(on) 9.0mΩ@ 10V 60V max ±20V max 24nC Vgs(th) 4.0V MZ Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SH SJ SP MZ MN DirectFET™ ISOMETRIC Description The IRF6674PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of an Micro8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6674PbF is optimized for primary side sockets in forward and push-pull isolated DC-DC topologies, for 48V and 36V-60V input voltage range systems. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance isolated DCDC converters. Absolute Maximum Ratings Parameter VDS VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAS 50 Typical R DS (on) (mΩ) Max. Units V Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g e e f Ãh h VGS, Gate-to-Source Voltage (V) 60 ±20 13.4 10.7 67 134 98 13.4 14 12 10 8 6 4 2 0 0 10 20 ID= 13.4A VDS = 48V VDS = 30V A mJ A 40 30 20 10 0 4 ID = 13.4A TJ = 125°C TJ = 25°C 6 8 10 12 14 VGS, Gate-to-Source Voltage (V) 16 30 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage Fig 1. Typical On-Resistance vs. Gate Voltage Notes:  Click on this section to link to the appropriate technical paper. ‚ Click on this section to link to the DirectFET Website. ƒ Surface mounted on 1 in. square Cu board, steady state. „ TC measured with thermocouple mounted to top (Drain) of part. … Repetitive rating; pulse width limited by max. junction temperature. † Starting TJ = 25°C, L = 0.272mH, RG = 25Ω, IAS = 13.4A. www.irf.com 1 4/24/08 IRF6674TRPbF Electrical Characteristic @ TJ = 25°C (unless otherwise specified) Parameter BVDSS ΔΒVDSS/ΔTJ RDS(on) VGS(th) ΔVGS(th)/ΔTJ IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Coss Coss Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Min. 60 ––– ––– 3.0 ––– ––– ––– ––– ––– 16 ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.07 9.0 4.0 -11 ––– ––– ––– ––– ––– 24 5.4 1.9 8.3 8.4 10.2 14 1.0 7.0 12 12 8.7 1350 390 105 1580 290 Max. ––– ––– 11 4.9 ––– 20 250 100 -100 ––– 36 ––– ––– 12 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Units V V/°C mΩ V mV/°C μA nA S Conditions VGS = 0V, ID = 250μA Reference to 25°C, ID = 1mA VGS = 10V, ID = 13.4A i VDS = VGS, ID = 100μA VDS = 60V, VGS = 0V VDS = 48V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 25V, ID = 13.4A VDS = 30V nC VGS = 10V ID = 13.4A See Fig. 15 nC Ω VDS = 16V, VGS = 0V VDD = 30V, VGS = 10V ID = 13.4A i ––– ––– ––– ––– ––– ––– ––– ––– ––– ns RG = 6.2 Ω VGS = 0V pF VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, f=1.0MHz VGS = 0V, VDS = 48V, f=1.0MHz Diode Characteristics Parameter IS ISM VSD trr Qrr Continuous Source Current (Body Diode) TJ= 25°C Pulsed Source Current (Body Diode) g ––– ––– ––– ––– 32 36 1.3 48 54 V ns nC Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. ––– ––– Typ. ––– ––– Max. 67 Units A Conditions MOSFET symbol showing the integral reverse G S p-n junction diode. TJ = 25°C, IS = 13.4A, VGS = 0V i D 134 TJ = 25°C, IF = 13.4A, VDD = 50V di/dt = 100A/μs c Notes: … Repetitive rating; pulse width limited by max. junction temperature. ‡ Pulse width ≤ 400μs; duty cycle ≤ 2%. 2 www.irf.com IRF6674TRPbF Absolute Maximum Ratings PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range e e f Parameter Max. 3.6 2.3 89 270 -40 to + 150 Units W °C Thermal Resistance RθJA RθJA RθJA RθJC RθJ-PCB 10 Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted el jl kl fl Parameter Typ. ––– 12.5 20 ––– 1.0 Max. 35 ––– ––– 1.4 ––– Units °C/W Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ4 τ1 τ2 τ3 τ4 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 Ci= τi/Ri Ci i/Ri Ri (°C/W) 0.023002 0.269754 0.770575 0.337715 τι (sec) 0.000008 0.000072 0.001409 0.005778 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = Pdm x Zthjc + Tc 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Case  ‰ Mounted on minimum footprint full size board with metalized ƒ Surface mounted on 1 in. square Cu board, steady state. „ TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink. Š Rθ is measured at TJ of approximately 90°C. ˆ Used double sided cooling, mounting pad with large heatsink. Notes: ƒ Surface mounted on 1 in. square Cu board (still air). ‰ Mounted on minimum footprint full size board with metalized back and with small clip heatsink. (still air) www.irf.com 3 IRF6674TRPbF 100 100 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 10 6.0V BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 6.0V 10 TOP VGS 15V 10V 8.0V 7.0V 6.0V BOTTOM ≤60μs PULSE WIDTH Tj = 25°C 1 0.1 1 VDS , Drain-to-Source Voltage (V) 10 1 0.1 ≤60μs PULSE WIDTH Tj = 150°C 1 VDS , Drain-to-Source Voltage (V) 10 Fig 4. Typical Output Characteristics 1000 ID, Drain-to-Source Current(Α) Fig 5. Typical Output Characteristics 2.0 ID = 13.4A Typical RDS(on) (Normalized) VGS = 10V 100 TJ = 150°C TJ = 25°C TJ = -40°C 1.5 10 1.0 1 VDS = 10V 0.1 2.0 4.0 6.0 ≤60μs PULSE WIDTH 8.0 10.0 12.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 6. Typical Transfer Characteristics 100000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd Fig 7. Normalized On-Resistance vs. Temperature 50 TA= 25°C (Normalized) 40 VGS = 7.0V 30 VGS = 8.0V VGS = 10V VGS = 15V 20 10000 C, Capacitance(pF) 1000 Coss Crss 100 Typical R DS(on) Ciss 10 10 1 10 VDS , Drain-to-Source Voltage (V) 100 0 0 20 40 60 80 100 ID, Drain Current (A) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage Fig 9. Typical On-Resistance vs. Drain Current 4 www.irf.com IRF6674TRPbF 1000 1000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS (on) 100 100μsec 10 1msec 1 100 10 TJ = 150°C TJ = 25°C TJ = -40°C 1 VGS = 0V 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 VSD , Source-to-Drain Voltage (V) TC = 25°C Tj = 150°C Single Pulse 0.1 1 10msec 0.1 10 100 VDS , Drain-toSource Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage 14 12 5.0 Fig11. Maximum Safe Operating Area VGS(th) Gate threshold Voltage (V) 4.5 ID , Drain Current (A) 10 8 6 4 2 0 25 50 75 100 125 150 4.0 3.5 ID = 250μA ID = 100μA 3.0 2.5 2.0 -75 -50 -25 0 25 50 75 100 125 150 TJ , Ambient Temperature (°C) TJ , Temperature ( °C ) Fig 12. Maximum Drain Current vs. Ambient Temperature 400 Fig 13. Typical Threshold Voltage vs. Junction Temperature ID 4.5A 9.3A BOTTOM 26.8A TOP EAS, Single Pulse Avalanche Energy (mJ) 300 200 100 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6674TRPbF Id Vds Vgs L 0 DUT 20K 1K S VCC Vgs(th) Qgodr Qgd Qgs2 Qgs1 Fig 15a. Gate Charge Test Circuit Fig 15b. Gate Charge Waveform V(BR)DSS 15V tp DRIVER VDS L VGS RG D.U.T IAS + V - DD A 20V tp 0.01Ω I AS Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit VDS VGS RG RD VDS 90% D.U.T. + - VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 10% VGS td(on) tr t d(off) tf Fig 17a. Switching Time Test Circuit Fig 17b. Switching Time Waveforms 6 www.irf.com IRF6674TRPbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer *** D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG * • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD ** + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel *** VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs DirectFET™ Substrate and PCB Layout, MZ Outline (Medium Size Can, Z-Designation). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations G=GATE D=DRAIN S=SOURCE D S G S D D D Note: For the most current drawing please refer to IR website at http://www.irf.com/package www.irf.com 7 IRF6674TRPbF DirectFET™ Outline Dimension, MZ Outline (Medium Size Can, Z-Designation). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations DIMENSIONS CODE A B C D E F G H J K L M N P METRIC MIN MAX 6.25 6.35 4.80 5.05 3.85 3.95 0.35 0.45 0.68 0.72 0.68 0.72 0.93 0.97 0.63 0.67 0.28 0.32 1.13 1.26 2.53 2.66 0.59 0.70 0.03 0.08 0.08 0.17 IMPERIAL MIN MAX 0.246 0.250 0.189 0.201 0.152 0.156 0.014 0.018 0.027 0.028 0.027 0.028 0.037 0.038 0.025 0.026 0.011 0.013 0.044 0.050 0.100 0.105 0.023 0.028 0.001 0.003 0.003 0.007 DirectFET™ Part Marking GATE MARKING LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" Note: For the most current drawing please refer to IR website at http://www.irf.com/package 8 www.irf.com IRF6674TRPbF DirectFET™ Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6674MTRPBF). For 1000 parts on 7" reel, order IRF6674MTR1PBF REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC METRIC MIN MAX MIN CODE MAX MIN MAX MIN MAX 6.9 N.C 12.992 A 330.0 N.C 177.77 N.C N.C 0.75 0.795 B N.C 20.2 N.C 19.06 N.C N.C 0.53 0.504 C 0.50 12.8 0.520 13.5 13.2 12.8 0.059 0.059 D N.C 1.5 1.5 N.C N.C N.C 2.31 3.937 E N.C 100.0 58.72 N.C N.C N.C N.C N.C F 0.53 N.C N.C 0.724 18.4 13.50 G 0.47 0.488 N.C 12.4 11.9 0.567 14.4 12.01 H 0.47 0.469 11.9 11.9 N.C 0.606 15.4 12.01 LOADED TAPE FEED DIRECTION NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.201 0.209 5.10 5.30 0.256 0.264 6.50 6.70 0.059 N.C 1.50 N.C 0.059 0.063 1.50 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.4/08 www.irf.com 9
IRF6674TRPBF_08
1. 物料型号:型号为ATMEGA16-16AU,是一种基于AVR增强型单片机。

2. 器件简介:ATMEGA16-16AU是8位AVR微控制器,具有16KB的系统内可编程Flash,1KB的EEPROM,512B的SRAM,32个通用I/O引脚,32个通用工作寄存器,三个具有独立预分频器和比较模式的定时器/计数器,一个实时计数器,一个模拟比较器,8通道10位ADC,支持ISP和I2C编程。

3. 引脚分配:共有44个引脚,包括电源引脚、地引脚、复位引脚、I/O引脚、晶振引脚等。

4. 参数特性:工作电压为2.7-5.5V,工作频率为16MHz,I/O口电流输出为4mA。

5. 功能详解:包括中断系统、定时器、串行通信、模数转换、模拟比较器等。

6. 应用信息:适用于需要较高计算能力和较多I/O接口的嵌入式系统。
IRF6674TRPBF_08 价格&库存

很抱歉,暂时无法提供与“IRF6674TRPBF_08”相匹配的价格&库存,您可以联系我们找货

免费人工找货