0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF6718L2TR1PbF

IRF6718L2TR1PbF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRF6718L2TR1PbF - DirectFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRF6718L2TR1PbF 数据手册
IRF6718L2TRPbF IRF6718L2TR1PbF l l l l l l PD - 97395B RoHS Compliant Containing No Lead and Bromide  Dual Sided Cooling Compatible  Ultra Low Package Inductance Very Low RDS(ON) for Reduced Conduction Losses Optimized for Active O-Ring / Efuse Applications Compatible with existing Surface Mount Techniques  Typical values (unless otherwise specified) DirectFET™ Power MOSFET ‚ VDSS Qg tot VGS Qgd 20nC RDS(on) Qgs2 9.4nC RDS(on) Qoss 50nC 25V max ±20V max 0.50mΩ@10V 1.0mΩ@4.5V Qrr 67nC Vgs(th) 1.9V 64nC Applicable DirectFET Outline and Substrate Outline  S1 S2 SB M2 M4 L6 DirectFET™ ISOMETRIC L4 L6 L8 Description The IRF6718L2TRPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a D-pak. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems. The IRF6718L2TRPbF has extremely low Si Rdson coupled with ultra low package resistance to minimize conduction losses. The IRF6718L2TRPbF has been optimized for parameters that are critical in reliable operation on Active O-Ring / Efuse / hot swap applications. Absolute Maximum Ratings Parameter VDS VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR 4 Typical RDS(on) (mΩ) Max. Units V Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g e e f Ãg h VGS, Gate-to-Source Voltage (V) 25 ±20 61 52 270 490 530 49 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 0 20 40 60 80 ID= 49A VDS= 20V VDS= 13V A mJ A ID = 61A 3 2 T J = 125°C 1 T J = 25°C 0 2 4 6 8 10 100 120 140 160 180 VGS, Gate -to -Source Voltage (V) QG Total Gate Charge (nC) Fig 1. Typical On-Resistance vs. Gate Voltage Notes: Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage „ TC measured with thermocouple mounted to top (Drain) of part. … Repetitive rating; pulse width limited by max. junction temperature. † Starting TJ = 25°C, L = 0.44mH, RG = 25Ω, IAS = 49A.  Click on this section to link to the appropriate technical paper. ‚ Click on this section to link to the DirectFET Website. ƒ Surface mounted on 1 in. square Cu board, steady state. www.irf.com 1 01/26/2010 IRF6718L2TR/TR1PbF Static @ TJ = 25°C (unless otherwise specified) Parameter BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th)/∆TJ IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. 25 ––– ––– ––– 1.35 ––– ––– ––– ––– ––– 820 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. Max. Units ––– 11 0.50 1.0 1.90 -7.6 ––– ––– ––– ––– ––– 64 18 9.4 20 16.6 29.4 50 0.90 67 140 47 53 8910 2310 1115 ––– ––– Conditions VGS = 0V, ID = 250µA V mV/°C Reference to 25°C, ID = 1mA 0.70 mΩ VGS = 10V, ID = 61A i VGS = 4.5V, ID = 49A i 1.4 VDS = VGS, ID = 150µA 2.35 V ––– 1.0 150 100 -100 ––– 96 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– pF VGS = 0V VDS = 13V ƒ = 1.0MHz ns nC Ω mV/°C µA nA S VDS = 20V, VGS = 0V VDS = 20V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 13V, ID = 49A VDS = 13V nC VGS = 4.5V ID = 49A See Fig. 18 VDS = 16V, VGS = 0V VDD = 13V, VGS = 4.5V i ID = 49A RG= 6.8Ω Diode Characteristics Parameter IS ISM VSD trr Qrr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) g Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ––– ––– ––– ––– ––– ––– 39 67 490 1.0 59 100 V ns nC Min. ––– Typ. Max. Units ––– 61 A Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 49A, VGS = 0V i TJ = 25°C, IF = 49A di/dt = 200A/µs i Notes: … Repetitive rating; pulse width limited by max. junction temperature. ‡ Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6718L2TR/TR1PbF Absolute Maximum Ratings PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range e e f Parameter Max. 4.3 3.0 83 270 -55 to + 175 Units W °C Thermal Resistance RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor e j k fl Parameter Typ. ––– 12.5 20 ––– 1.0 0.029 Max. 35 ––– ––– 1.8 ––– Units °C/W eà W/°C 100 10 Thermal Response ( Z thJA ) 1 0.1 0.01 D = 0.50 0.20 0.10 0.05 0.02 0.01 τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τA τ4 τA Ri (°C/W) 12.2942 14.4246 2.07265 6.20859 18.10679 2.626824 0.007811 0.239314 τi (sec) τ1 τ2 τ3 τ4 Ci= τ i /Ri Ci= τ i/Ri 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.01 0.1 1 10 100 1000 0.0001 1E-006 1E-005 0.0001 0.001 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  (At lower pulse widths ZthJA & ZthJC are combined) Notes: ‰ Mounted on minimum footprint full size board with metalized ƒ Surface mounted on 1 in. square Cu board, steady state. „ TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink. Š Rθ is measured at TJ of approximately 90°C. ˆ Used double sided cooling, mounting pad with large heatsink. ƒ Surface mounted on 1 in. square Cu board (still air). ‰ Mounted on minimum footprint full size board with metalized back and with small clip heatsink. (still air) www.irf.com 3 IRF6718L2TR/TR1PbF 1000 TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 1000 TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V ID, Drain-to-Source Current (A) 100 BOTTOM ID, Drain-to-Source Current (A) BOTTOM 10 100 1 2.5V 0.1 0.1 1 10 100 1000 VDS, Drain-to-Source Voltage (V) ≤60µs PULSE WIDTH Tj = 25°C 10 0.1 2.5V ≤60µs PULSE WIDTH Tj = 175°C 1 10 100 1000 V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics 1000 VDS = 15V ≤60µs PULSE WIDTH 100 Typical RDS(on) (Normalized) Fig 5. Typical Output Characteristics 2.0 ID = 61A V GS = 10V V GS = 4.5V 1.5 ID, Drain-to-Source Current (A) 10 T J = 175°C T J = 25°C 1 T J = -40°C 1.0 0.1 1 2 3 4 5 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 6. Typical Transfer Characteristics 100000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd Fig 7. Normalized On-Resistance vs. Temperature 0.90 Top Vgs = 6.0V Vgs = 8.0V Vgs = 10V Vgs = 12V Vgs = 14V Vgs = 16V Vgs = 18V T J = 25°C 10000 Ciss Coss Crss Typical RDS(on) ( mΩ) C oss = C ds + C gd 0.80 Bottom C, Capacitance(pF) 0.70 1000 0.60 100 1 10 VDS, Drain-to-Source Voltage (V) 100 0.50 0 50 100 150 200 Fig 8. Typical Capacitance vs.Drain-to-Source Voltage Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage ID, Drain Current (A) 4 www.irf.com IRF6718L2TR/TR1PbF 1000 10000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 T J = 175°C T J = 25°C T J = -40°C 1000 100 1msec 10 10msec DC T A = 25°C T J = 175°C Single Pulse 0.01 0.10 1.00 10.00 100.00 10 1 VGS = 0V 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 VSD, Source-to-Drain Voltage (V) 1 0.1 Fig 10. Typical Source-Drain Diode Forward Voltage 70 60 ID, Drain Current (A) VDS, Drain-to-Source Voltage (V) Fig 11. Maximum Safe Operating Area 3.0 Typical VGS(th) Gate threshold Voltage (V) 2.5 2.0 1.5 1.0 0.5 0.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) ID = 150µA ID = 250µA ID = 1.0A 50 40 30 20 10 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) ID = 1.0mA Fig 12. Maximum Drain Current vs. Case Temperature 400 Gfs, Forward Transconductance (S) Fig 13. Typical Threshold Voltage vs. Junction Temperature 2400 EAS , Single Pulse Avalanche Energy (mJ) 2000 1600 1200 800 400 0 300 T J = 175°C 200 T J = 25°C ID 2.9A 4.6A BOTTOM 49A TOP 100 V DS = 10V 380µs PULSE WIDTH 2 0 0 20 40 60 80 100 25 50 75 100 125 150 175 ID,Drain-to-Source Current (A) Starting T J , Junction Temperature (°C) Fig 14. Typ. Forward Transconductance vs. Drain Current Fig 15. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6718L2TR/TR1PbF 1000 Duty Cycle = Single Pulse 100 Avalanche Current (A) Allowed avalanche Current vs avalanche pulsewidth, tav, assuming DTj = 150°C and Tstart =25°C (Single Pulse) 10 0.01 1 0.05 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 25°C and Tstart = 150°C. 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 0.1 0.01 1.0E-06 tav (sec) Fig 16. Typical Avalanche Current vs.Pulsewidth 600 500 400 300 200 100 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Single Pulse ID = 49A Notes on Repetitive Avalanche Curves , Figures 16, 17: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 19a, 19b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 16, 17). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav EAR , Avalanche Energy (mJ) Fig 17. Maximum Avalanche Energy vs. Temperature 6 www.irf.com IRF6718L2TR/TR1PbF Id Vds Vgs L 0 DUT 20K 1K S VCC Vgs(th) Qgodr Qgd Qgs2 Qgs1 Fig 18a. Gate Charge Test Circuit Fig 18b. Gate Charge Waveform V(BR)DSS 15V tp DRIVER VDS L RG 20V D.U.T IAS tp + V - DD A 0.01Ω I AS Fig 19b. Unclamped Inductive Waveforms Fig 19a. Unclamped Inductive Test Circuit VDS VGS RG RD VGS 90% D.U.T. + - VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 10% VDS td(off) tf td(on) tr Fig 20a. Switching Time Test Circuit Fig 20b. Switching Time Waveforms www.irf.com 7 IRF6718L2TR/TR1PbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - „ +  RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 19. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET™ Board Footprint, L6 (Large Size Can). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations G = GATE D = DRAIN S = SOURCE D D S D G S S S S D S D D 8 www.irf.com IRF6718L2TR/TR1PbF DirectFET™ Outline Dimension, L6 Outline (LargeSize Can). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations DIMENSIONS METRIC MAX CODE MIN 9.15 A 9.05 7.10 B 6.85 6.00 C 5.90 0.65 D 0.55 0.62 E 0.58 1.22 F 1.18 G 0.98 1.02 0.77 H 0.73 0.42 J 0.38 1.47 K 1.34 2.69 L 2.52 M 0.616 0.676 N 0.020 0.080 0.18 P 0.09 IMPERIAL MIN MAX 0.356 0.360 0.270 0.280 0.232 0.236 0.022 0.026 0.023 0.024 0.046 0.048 0.015 0.017 0.029 0.030 0.015 0.017 0.053 0.058 0.099 0.106 0.0235 0.0274 0.0008 0.0031 0.003 0.007 DirectFET™ Part Marking GATE MARKING LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" www.irf.com 9 IRF6718L2TR/TR1PbF DirectFET™ Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4000 parts. (ordered as IRF6718L2PBF). REEL DIMENSIONS STANDARD OPTION (QTY 4000) IMPERIAL METRIC MIN CODE MAX MIN MAX 12.992 N.C A 330.0 N.C 0.795 B 20.2 N.C N.C 0.504 C 12.8 0.520 13.2 0.059 D 1.5 N.C N.C E 3.937 100.0 N.C N.C F N.C N.C 0.889 22.4 G 0.646 16.4 0.724 18.4 H 0.626 15.9 0.724 18.4 HIT9(Ã7IHTRIFFCHAà 8CG9HSCIHSÃCHÃGG 8CG9HSCIHS CGP9RC5F G9TRC7 ÃGCH ÃG5X 7I89 ÃGCH ÃG5X Ã5 '   "$' "%$ H7 #% H7 Ã6 Ã" Ã7 #' $! $ ! $"  '  '' Ã8 Ã%" Ã%$  &!  ' Ã9 Ã%  Ã%" !$$ !%" Ã@ Ã'! Ã'# #' H7 ÃA Ã# ÃH7 #' $! ÃB Ã# Ã$ Note: For the most current drawing please refer to IR website at http://www.irf.com/package Data and specifications subject to change without notice. This product has been designed and qualified to MSL1 rating for the Consumer market. Additional storage requirement details for DirectFET products can be found in application note AN1035 on IR’s Web site. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.01/2010 10 www.irf.com
IRF6718L2TR1PbF 价格&库存

很抱歉,暂时无法提供与“IRF6718L2TR1PbF”相匹配的价格&库存,您可以联系我们找货

免费人工找货