0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF7103Q

IRF7103Q

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRF7103Q - Power MOSFET(Vdss=50V) - International Rectifier

  • 数据手册
  • 价格&库存
IRF7103Q 数据手册
PD - 93944C AUTOMOTIVE MOSFET Typical Applications q q q IRF7103Q HEXFET® Power MOSFET Anti-lock Braking Systems (ABS) Electronic Fuel Injection Power Doors, Windows & Seats Advanced Process Technology Dual N-Channel MOSFET Ultra Low On-Resistance 175°C Operating Temperature Repetitive Avalanche Allowed up to Tjmax Automotive [Q101] Qualified S1 VDSS 50V RDS(on) max (mΩ) 130@VGS = 10V 200@VGS = 4.5V ID 3.0A 1.5A Benefits q q q q q q 1 8 D1 D1 D2 D2 Description Specifically designed for Automotive applications, these HEXFET® Power MOSFET's in a Dual SO-8 package utilize the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of these Automotive qualified HEXFET Power MOSFET's are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. The efficient SO-8 package provides enhanced thermal characteristics and dual MOSFET die capability making it ideal in a variety of power applications. This dual, surface mount SO-8 can dramatically reduce board space and is also available G1 S2 G2 2 7 3 6 4 5 T o p V ie w SO-8 in Tape & Reel. Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 70°C IDM PD @TC = 25°C VGS EAS IAR EAR dv/dt TJ, TSTG Continuous Drain Current, VGS @ 4.5V Continuous Drain Current, VGS @ 4.5V Pulsed Drain Current Q Power DissipationS Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche EnergyT Avalanche CurrentQ Repetitive Avalanche EnergyV Peak Diode Recovery dv/dt U Junction and Storage Temperature Range Max. 3.0 2.5 25 2.4 16 ± 20 22 See Fig.16c, 16d, 19, 20 12 -55 to + 175 Units A W mW/°C V mJ A mJ V/ns °C Thermal Resistance Symbol RθJL RθJA Parameter Junction-to-Drain Lead Junction-to-Ambient S Typ. ––– ––– Max. 20 50 Units °C/W www.irf.com 1 03/14/02 IRF7103Q Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)DSS ∆V(BR)DSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Min. 50 ––– ––– ––– 1.0 3.4 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.057 ––– ––– ––– ––– ––– ––– ––– ––– 10 1.2 2.8 5.1 1.7 15 2.3 255 69 29 Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 130 VGS = 10V, ID = 3.0A R mΩ 200 VGS = 4.5V, ID = 1.5A R 3.0 V VDS = VGS, ID = 250µA ––– S VDS = 15V, ID = 3.0A 2.0 VDS = 40V, VGS = 0V µA 25 VDS = 40V, VGS = 0V, TJ = 55°C 100 VGS = 20V nA -100 VGS = -20V 15 ID = 2.0A ––– nC VDS = 40V ––– VGS = 10V ––– VDD = 25V R ––– ID = 1.0A ns ––– RG = 6.0Ω ––– RD = 25Ω ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Q Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– 35 45 3.0 A 12 1.2 53 67 V ns nC Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 1.5A, VGS = 0VR TJ = 25°C, IF = 1.5A di/dt = 100A/µs R D S Notes: Q Repetitive rating; pulse width limited by max. junction temperature. R Pulse width ≤ 400µs; duty cycle ≤ 2%. S Surface mounted on 1 in square Cu board T Starting TJ = 25°C, L = 4.9mH TJ ≤ 175°C U ISD ≤ 2.0A, di/dt ≤ 155A/µs, VDD ≤ V(BR)DSS, V Limited by TJmax , see Fig.16c, 16d, 19, 20 for typical repetitive avalanche performance. RG = 25Ω, IAS = 3.0A. (See Figure 12). 2 www.irf.com IRF7103Q 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 100 ID , Drain-to-Source Current (A) ID , Drain-to-Source Current (A) 10 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 4.5V 4.5V 10 1 20µs PULSE WIDTH Tj = 25°C 1 0.1 1 10 100 0.1 0.1 1 20µs PULSE WIDTH Tj = 175°C 10 100 VDS, Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100.00 2.5 ID = 3.0A  ID , Drain-to-Source Current (Α ) T J = 175°C R DS(on) , Drain-to-Source On Resistance (Normalized) 2.0 10.00 T J = 25°C 1.5 1.0 0.5 1.00 3.0 6.0 VDS = 25V 20µs PULSE WIDTH 9.0 12.0 15.0 0.0 -60 -40 -20 V GS = 10V  0 20 40 60 80 100 120 140 160 180 VGS, Gate-to-Source Voltage (V) TJ , Junction Temperature ( °C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com 3 IRF7103Q 10000 VGS = 0V, f = 1 MHZ Ciss = C + C , C gs gd ds SHORTED Crss = C gd Coss = C + Cgd ds 12 I D = 2.0A   V DS = 40V V DS = 25V V DS = 10V 9 C, Capacitance(pF) VGS, Gate-to-Source Voltage (V) 1000 Ciss 100 6 Coss Crss 3 10 1 10 100 0 0 3 6 9 12 VDS, Drain-to-Source Voltage (V) Q G, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 10 100 OPERATION IN THIS AREA LIMITED BY R DS (on) ISD , Reverse Drain Current (A) ID, Drain-to-Source Current (A) TJ = 175 ° C  10 1 TJ = 25 ° C  1 100µsec 1msec 0.1 Tc = 25°C Tj = 175°C Single Pulse 0 1 10 10msec 0.1 0.4 V GS = 0 V  0.6 0.8 1.0 1.2 0.01 100 1000 VDS , Drain-toSource Voltage (V) VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRF7103Q 3.0 VDS 2.4 RD VGS RG I D , Drain Current (A) D.U.T. + 1.8 -VDD VGS 1.2 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 10a. Switching Time Test Circuit 0.6 VDS 90% 0.0 25 50 75 100 125 150 175 TC , Case Temperature ( °C) Fig 9. Maximum Drain Current Vs. Case Temperature 10% VGS td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms 100 (Z thJA) D = 0.50 10 0.20 0.10 Thermal Response 0.05 0.02 1 0.01  SINGLE PULSE (THERMAL RESPONSE) 0.1 0.00001 0.0001 0.001 0.01  Notes: 1. Duty factor D = 2. Peak T 0.1 t1/ t 2 J = P DM x Z thJA  P DM t1 t2 +T A 1 10 t 1, Rectangular Pulse Duration (sec) Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 IRF7103Q R DS(on) , Drain-to -Source On Resistance ( Ω ) R DS (on) , Drain-to-Source On Resistance ( Ω ) 0.15 2.500 0.14 2.000 0.13 1.500 VGS = 4.5V 0.12 1.000 0.11 ID = 3.0A 0.10 0.500 VGS = 10V 0.09 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 0.000 0 5 10 15 20 25 30 35 40 ID , Drain Current (A) -V GS, Gate -to -Source Voltage (V) Fig 12. Typical On-Resistance Vs. Gate Voltage Fig 13. Typical On-Resistance Vs. Drain Current 2.0 70 60 V GS(th) Gate threshold Voltage (V) 1.8 50 Power (W) 150 ID = 250µA 1.5 40 30 20 10 1.3 1.0 -75 -50 -25 0 25 50 75 100 125 0 1.00 10.00 100.00 1000.00 TJ , Temperature ( °C ) Time (sec) Fig 14. Typical Threshold Voltage Vs. Junction Temperature Fig 15. Typical Power Vs. Time 6 www.irf.com IRF7103Q 60 EAS , Single Pulse Avalanche Energy (mJ) 48  TOP BOTTOM ID 1.2A 2.5A 3.0A VDS L 1 5V 36 D R IV E R 24 RG 20V D .U .T IA S + V - DD A 12 tp 0 .0 1 Ω Fig 16c. Unclamped Inductive Test Circuit 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature ( ° C) Fig 16a. Maximum Avalanche Energy Vs. Drain Current V (B R )D SS tp IAS Fig 16d. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF QG VGS D.U.T. + V - DS QGS VG QGD VGS 3mA IG ID Current Sampling Resistors Charge Fig 17. Gate Charge Test Circuit Fig 18. Basic Gate Charge Waveform www.irf.com 7 IRF7103Q 1000 Duty Cycle = Single Pulse 100 Avalanche Current (A) 10 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 0.05 0.10 1 0.1 0.01 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 tav (sec) Fig 19. Typical Avalanche Current Vs.Pulsewidth 25 EAR , Avalanche Energy (mJ) 20 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 3.0A 15 10 5 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = t av ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = ∆T/ ZthJC Iav = 2∆T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 20. Maximum Avalanche Energy Vs. Temperature 8 www.irf.com IRF7103Q SO-8 Package Details D A 5 B DIM A b INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMET ERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 A1 .0040 6 E 8 7 6 5 H 0.25 [.010] A c D E e e1 H K L y 1 2 3 4 .050 BAS IC .025 BAS IC .2284 .0099 .016 0° .2440 .0196 .050 8° 1.27 BAS IC 0.635 BAS IC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8° 6X e e1 A C 0.10 [.004] 8X b 0.25 [.010] A1 CAB y K x 45° 8X L 7 8X c NOT ES : 1. DIMENSIONING & T OLERANCING PER AS ME Y14.5M-1994. 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES ]. 4. OUTLINE CONFORMS T O JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROT RUSIONS. MOLD PROTRUS IONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROT RUSIONS. MOLD PROTRUS IONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS T HE LENGT H OF LEAD FOR SOLDERING TO A S UBST RAT E. 3X 1.27 [.050] F OOT PRINT 8X 0.72 [.028] 6.46 [.255] 8X 1.78 [.070] SO-8 Part Marking EXAMPLE: T HIS IS AN IRF7101 (MOS FET ) DATE CODE (YWW) Y = LAS T DIGIT OF THE YEAR WW = WEEK LOT CODE PART NUMBER 9 INTERNAT IONAL RECTIFIER LOGO www.irf.com YWW XXXX F7101 IRF7103Q SO-8 Tape and Reel T E R M IN A L N U M B E R 1 1 2 .3 ( . 48 4 ) 1 1 .7 ( . 46 1 ) 8 .1 ( . 31 8 ) 7 .9 ( . 31 2 ) F E E D D IR E C T IO N N O TES: 1 . C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R . 2 . A L L D IM E N S IO N S A R E S H O W N IN M IL L IM E T E R S (IN C H E S ). 3 . O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1. 3 3 0.0 0 ( 1 2 .9 9 2 ) M AX . 1 4 .4 0 ( . 5 66 ) 1 2 .4 0 ( . 4 88 ) N O TE S : 1. C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R . 2. O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1 . Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/02 10 www.irf.com
IRF7103Q 价格&库存

很抱歉,暂时无法提供与“IRF7103Q”相匹配的价格&库存,您可以联系我们找货

免费人工找货