PD - 93944C
AUTOMOTIVE MOSFET
Typical Applications
q q q
IRF7103Q
HEXFET® Power MOSFET
Anti-lock Braking Systems (ABS) Electronic Fuel Injection Power Doors, Windows & Seats Advanced Process Technology Dual N-Channel MOSFET Ultra Low On-Resistance 175°C Operating Temperature Repetitive Avalanche Allowed up to Tjmax Automotive [Q101] Qualified
S1
VDSS
50V
RDS(on) max (mΩ)
130@VGS = 10V 200@VGS = 4.5V
ID
3.0A 1.5A
Benefits
q q q q q q
1
8
D1 D1 D2 D2
Description
Specifically designed for Automotive applications, these HEXFET® Power MOSFET's in a Dual SO-8 package utilize the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of these Automotive qualified HEXFET Power MOSFET's are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. The efficient SO-8 package provides enhanced thermal characteristics and dual MOSFET die capability making it ideal in a variety of power applications. This dual, surface mount SO-8 can dramatically reduce board space and is also available
G1 S2 G2
2
7
3
6
4
5
T o p V ie w
SO-8
in Tape & Reel.
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C ID @ TC = 70°C IDM PD @TC = 25°C VGS EAS IAR EAR dv/dt TJ, TSTG Continuous Drain Current, VGS @ 4.5V Continuous Drain Current, VGS @ 4.5V Pulsed Drain Current Q Power DissipationS Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche EnergyT Avalanche CurrentQ Repetitive Avalanche EnergyV Peak Diode Recovery dv/dt U Junction and Storage Temperature Range
Max.
3.0 2.5 25 2.4 16 ± 20 22 See Fig.16c, 16d, 19, 20 12 -55 to + 175
Units
A W mW/°C V mJ A mJ V/ns °C
Thermal Resistance
Symbol
RθJL RθJA
Parameter
Junction-to-Drain Lead Junction-to-Ambient S
Typ.
––– –––
Max.
20 50
Units
°C/W
www.irf.com
1
03/14/02
IRF7103Q
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)DSS
∆V(BR)DSS/∆TJ
Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss
Min. 50 ––– ––– ––– 1.0 3.4 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
Typ. ––– 0.057 ––– ––– ––– ––– ––– ––– ––– ––– 10 1.2 2.8 5.1 1.7 15 2.3 255 69 29
Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 130 VGS = 10V, ID = 3.0A R mΩ 200 VGS = 4.5V, ID = 1.5A R 3.0 V VDS = VGS, ID = 250µA ––– S VDS = 15V, ID = 3.0A 2.0 VDS = 40V, VGS = 0V µA 25 VDS = 40V, VGS = 0V, TJ = 55°C 100 VGS = 20V nA -100 VGS = -20V 15 ID = 2.0A ––– nC VDS = 40V ––– VGS = 10V ––– VDD = 25V R ––– ID = 1.0A ns ––– RG = 6.0Ω ––– RD = 25Ω ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz
Source-Drain Ratings and Characteristics
IS
ISM
VSD trr Qrr
Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Q Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge
Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– 35 45 3.0 A 12 1.2 53 67 V ns nC
Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 1.5A, VGS = 0VR TJ = 25°C, IF = 1.5A di/dt = 100A/µs R
D
S
Notes:
Q Repetitive rating; pulse width limited by
max. junction temperature. R Pulse width ≤ 400µs; duty cycle ≤ 2%. S Surface mounted on 1 in square Cu board
T Starting TJ = 25°C, L = 4.9mH
TJ ≤ 175°C
U ISD ≤ 2.0A, di/dt ≤ 155A/µs, VDD ≤ V(BR)DSS, V Limited by TJmax , see Fig.16c, 16d, 19, 20 for typical repetitive
avalanche performance.
RG = 25Ω, IAS = 3.0A. (See Figure 12).
2
www.irf.com
IRF7103Q
100
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
100
ID , Drain-to-Source Current (A)
ID , Drain-to-Source Current (A)
10
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
4.5V
4.5V
10
1
20µs PULSE WIDTH Tj = 25°C
1 0.1 1 10 100 0.1 0.1 1
20µs PULSE WIDTH Tj = 175°C
10 100
VDS, Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100.00
2.5
ID = 3.0A
ID , Drain-to-Source Current (Α )
T J = 175°C
R DS(on) , Drain-to-Source On Resistance (Normalized)
2.0
10.00
T J = 25°C
1.5
1.0
0.5
1.00 3.0 6.0
VDS = 25V 20µs PULSE WIDTH
9.0 12.0 15.0
0.0 -60 -40 -20
V GS = 10V
0 20 40 60 80 100 120 140 160 180
VGS, Gate-to-Source Voltage (V)
TJ , Junction Temperature ( °C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRF7103Q
10000 VGS = 0V, f = 1 MHZ Ciss = C + C , C gs gd ds SHORTED Crss = C gd Coss = C + Cgd ds
12
I D = 2.0A
V DS = 40V V DS = 25V V DS = 10V
9
C, Capacitance(pF)
VGS, Gate-to-Source Voltage (V)
1000
Ciss
100
6
Coss Crss
3
10 1 10 100
0 0 3 6 9 12
VDS, Drain-to-Source Voltage (V)
Q G, Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
10
100 OPERATION IN THIS AREA LIMITED BY R DS (on)
ISD , Reverse Drain Current (A)
ID, Drain-to-Source Current (A)
TJ = 175 ° C
10
1
TJ = 25 ° C
1
100µsec 1msec
0.1 Tc = 25°C Tj = 175°C Single Pulse 0 1 10 10msec
0.1 0.4
V GS = 0 V
0.6 0.8 1.0 1.2
0.01 100 1000 VDS , Drain-toSource Voltage (V)
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRF7103Q
3.0
VDS
2.4
RD
VGS RG
I D , Drain Current (A)
D.U.T.
+
1.8
-VDD
VGS
1.2
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
Fig 10a. Switching Time Test Circuit
0.6
VDS 90%
0.0 25 50 75 100 125 150 175
TC , Case Temperature ( °C)
Fig 9. Maximum Drain Current Vs. Case Temperature
10% VGS
td(on) tr t d(off) tf
Fig 10b. Switching Time Waveforms
100
(Z thJA)
D = 0.50
10
0.20 0.10
Thermal Response
0.05
0.02 1 0.01
SINGLE PULSE (THERMAL RESPONSE) 0.1 0.00001 0.0001 0.001 0.01
Notes: 1. Duty factor D = 2. Peak T 0.1 t1/ t
2 J = P DM x Z thJA
P DM t1 t2 +T A 1 10
t 1, Rectangular Pulse Duration (sec)
Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF7103Q
R DS(on) , Drain-to -Source On Resistance ( Ω )
R DS (on) , Drain-to-Source On Resistance ( Ω )
0.15
2.500
0.14
2.000
0.13
1.500
VGS = 4.5V
0.12
1.000
0.11
ID = 3.0A
0.10
0.500
VGS = 10V
0.09 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0
0.000 0 5 10 15 20 25 30 35 40 ID , Drain Current (A)
-V GS, Gate -to -Source Voltage (V)
Fig 12. Typical On-Resistance Vs. Gate Voltage
Fig 13. Typical On-Resistance Vs. Drain Current
2.0
70 60
V GS(th) Gate threshold Voltage (V)
1.8
50
Power (W)
150
ID = 250µA
1.5
40 30 20 10
1.3
1.0 -75 -50 -25 0 25 50 75 100 125
0 1.00 10.00 100.00 1000.00
TJ , Temperature ( °C )
Time (sec)
Fig 14. Typical Threshold Voltage Vs. Junction Temperature
Fig 15. Typical Power Vs. Time
6
www.irf.com
IRF7103Q
60
EAS , Single Pulse Avalanche Energy (mJ)
48
TOP BOTTOM ID 1.2A 2.5A 3.0A
VDS L
1 5V
36
D R IV E R
24
RG
20V
D .U .T
IA S
+ V - DD
A
12
tp
0 .0 1 Ω
Fig 16c. Unclamped Inductive Test Circuit
0 25 50 75 100 125 150 175
Starting TJ , Junction Temperature ( ° C)
Fig 16a. Maximum Avalanche Energy Vs. Drain Current
V (B R )D SS tp
IAS
Fig 16d. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50KΩ 12V .2µF .3µF
QG
VGS
D.U.T. + V - DS
QGS VG
QGD
VGS
3mA
IG
ID
Current Sampling Resistors
Charge
Fig 17. Gate Charge Test Circuit
Fig 18. Basic Gate Charge Waveform
www.irf.com
7
IRF7103Q
1000
Duty Cycle = Single Pulse
100
Avalanche Current (A)
10
Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 0.05 0.10
1
0.1
0.01 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01
tav (sec)
Fig 19. Typical Avalanche Current Vs.Pulsewidth
25
EAR , Avalanche Energy (mJ)
20
TOP Single Pulse BOTTOM 10% Duty Cycle ID = 3.0A
15
10
5
0 25 50 75 100 125 150 175
Starting T J , Junction Temperature (°C)
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = t av ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = ∆T/ ZthJC Iav = 2∆T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 20. Maximum Avalanche Energy Vs. Temperature
8
www.irf.com
IRF7103Q
SO-8 Package Details
D A 5 B
DIM A b INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMET ERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
c D E e e1 H K L y
1
2
3
4
.050 BAS IC .025 BAS IC .2284 .0099 .016 0° .2440 .0196 .050 8°
1.27 BAS IC 0.635 BAS IC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8°
6X
e
e1 A C 0.10 [.004] 8X b 0.25 [.010] A1 CAB y
K x 45°
8X L 7
8X c
NOT ES : 1. DIMENSIONING & T OLERANCING PER AS ME Y14.5M-1994. 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES ]. 4. OUTLINE CONFORMS T O JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROT RUSIONS. MOLD PROTRUS IONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROT RUSIONS. MOLD PROTRUS IONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS T HE LENGT H OF LEAD FOR SOLDERING TO A S UBST RAT E. 3X 1.27 [.050]
F OOT PRINT 8X 0.72 [.028]
6.46 [.255]
8X 1.78 [.070]
SO-8 Part Marking
EXAMPLE: T HIS IS AN IRF7101 (MOS FET ) DATE CODE (YWW) Y = LAS T DIGIT OF THE YEAR WW = WEEK LOT CODE PART NUMBER
9
INTERNAT IONAL RECTIFIER LOGO
www.irf.com
YWW XXXX F7101
IRF7103Q
SO-8 Tape and Reel
T E R M IN A L N U M B E R 1
1 2 .3 ( . 48 4 ) 1 1 .7 ( . 46 1 )
8 .1 ( . 31 8 ) 7 .9 ( . 31 2 )
F E E D D IR E C T IO N
N O TES: 1 . C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R . 2 . A L L D IM E N S IO N S A R E S H O W N IN M IL L IM E T E R S (IN C H E S ). 3 . O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1.
3 3 0.0 0 ( 1 2 .9 9 2 ) M AX .
1 4 .4 0 ( . 5 66 ) 1 2 .4 0 ( . 4 88 ) N O TE S : 1. C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R . 2. O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1 .
Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/02
10
www.irf.com