PD - 95179
IRF7307PbF
Generation V Technology l Ultra Low On-Resistance l Dual N and P Channel Mosfet l Surface Mount l Available in Tape & Reel l Dynamic dv/dt Rating l Fast Switching l Lead-Free Description
l
HEXFET® Power MOSFET
S1 G1 S2 G2
N-CHANNEL MOSFET 1 8 2 3 4 7
D1 D1 D2 D2
N-Ch VDSS 20V
P-Ch -20V
6 5
P-CHANNEL MOSFET
Top View
RDS(on) 0.050Ω 0.090Ω
Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications. The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application.
SO-8
Absolute Maximum Ratings
Parameter
ID @ TA = 25°C ID @ TA = 25°C I D @ TA = 70°C I DM P D @TA = 25°C VGS dv/dt TJ, TSTG 10 Sec. Pulse Drain Current, VGS @ 4.5V Continuous Drain Current, VGS @ 4.5V Continuous Drain Current, VGS @ 4.5V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Junction and Storage Temperature Range
Max.
N-Channel 5.7 5.2 4.1 21 2.0 0.016 ± 12 5.0 -55 to + 150 -5.0 P-Channel -4.7 -4.3 -3.4 -17
Units
A
W W/°C V V/ns °C
Thermal Resistance Ratings
Parameter
RθJA Maximum Junction-to-Ambient
Typ.
Max.
62.5
Units
°C/W
10/7/04
IRF7307PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter V (BR)DSS Drain-to-Source Breakdown Voltage N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-P N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-P N-P N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch Min. Typ. Max. 20 -20 0.044 -0.012 0.050 0.070 0.090 0.140 0.70 -0.70 8.30 4.00 1.0 -1.0 25 -25 ±100 20 22 2.2 3.3 8.0 9.0 9.0 8.4 42 26 32 51 51 33 4.0 6.0 660 610 280 310 140 170 Units V V/°C Ω V S µA Conditions VGS = 0V, ID = 250µA VGS = 0V, ID = -250µA Reference to 25°C, ID = 1mA Reference to 25°C, ID = -1mA VGS = 4.5V, ID = 2.6A VGS = 2.7V, ID = 2.2A VGS = -4.5V, ID = -2.2A VGS = -2.7V, ID = -1.8A VDS = VGS, I D = 250µA VDS = VGS, I D = -250µA VDS = 15V, I D = 2.6A VDS = -15V, I D = -2.2A VDS = 16V, VGS = 0V VDS = -16V, V GS = 0V, VDS = 16V, VGS = 0V, TJ = 125°C VDS = -16V, V GS = 0V, TJ = 125°C VGS = ± 12V N-Channel I D = 2.6A, VDS = 16V, VGS = 4.5V P-Channel I D = -2.2A, VDS = -16V, VGS = -4.5V N-Channel VDD = 10V, ID = 2.6A, RG = 6.0Ω, RD = 3.8Ω P-Channel VDD = -10V, ID = -2.2A, RG = 6.0Ω, RD = 4.5Ω Between lead tip and center of die contact N-Channel VGS = 0V, VDS = 15V, = 1.0MHz P-Channel VGS = 0V, VDS = -15V, = 1.0MHz
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(ON) V GS(th) g fs I DSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductace Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance
nC
ns
nH
pF
Source-Drain Ratings and Characteristics
Parameter IS I SM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-P Min. Typ. Max. Units Conditions 2.5 -2.5 A 21 -17 1.0 TJ = 25°C, IS = 1.8A, VGS = 0V V -1.0 TJ = 25°C, IS = -1.8A, VGS = 0V 29 44 N-Channel ns 56 84 TJ = 25°C, IF = 2.6A, di/dt = 100A/µs 22 33 P-Channel nC TJ = 25°C, IF = -2.2A, di/dt = 100A/µs 71 110 Intrinsic turn-on time is neglegible (turn-on is dominated by LS+LD)
Repetitive rating; pulse width limited by
Notes:
max. junction temperature. ( See fig. 23 )
Pulse width ≤ 300µs; duty cycle ≤ 2%. Surface mounted on FR-4 board, t ≤ 10sec.
N-Channel ISD ≤ 2.6A, di/dt ≤ 100A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C
P-Channel ISD ≤ -2.2A, di/dt ≤ 50A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C
N-Channel
1000
VGS 7.5V 5.0V 4.0V 3.5V 3.0V 2.5V 2.0V BOTTOM 1.5V TOP
IRF7307PbF
1000
I , Drain-to-Source Current (A) D
I , Drain-to-Source Current (A) D
VGS 7.5V 5.0V 4.0V 3.5V 3.0V 2.5V 2.0V BOTTOM 1.5V TOP
100
100
10
10
1.5V 20µs PULSE WIDTH TJ = 150°C A
1 10 100
1.5V
1 0.1 1
20µs PULSE WIDTH TJ = 25°C A
10 100
1 0.1
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
Fig 2. Typical Output Characteristics
2.0
T = 25°C J TJ = 150°C
R DS(on) , Drain-to-Source On Resistance (Normalized)
ID = 4.3A
I D , Drain-to-Source Current (A)
1.5
10
1.0
0.5
1 1.5 2.0 2.5 3.0
VDS = 15V 20µs PULSE WIDTH
3.5 4.0 4.5
5.0
A
0.0 -60 -40 -20
VGS = 4.5V
0 20 40 60
80 100 120 140 160
A
VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
1200
Fig 4. Normalized On-Resistance Vs. Temperature
10
V GS , Gate-to-Source Voltage (V)
V GS = 0V, f = 1MHz C iss = Cgs + C gd , Cds SHORTED C rss = C gd C oss = C ds + C gd
I D = 2.6A VDS = 16V
8
C, Capacitance (pF)
900
Ciss
6
600
Coss
4
300
Crss
2
0 1 10 100
A
0 0 5 10
FOR TEST CIRCUIT SEE FIGURE 11
15 20 25
A
V DS , Drain-to-Source Voltage (V)
Q G , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
IRF7307PbF
100
N-Channel
100
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED BY RDS(on)
10
ID , Drain Current (A)
100us 10 1ms
TJ = 150°C TJ = 25°C
1
0.1 0.0 0.5 1.0 1.5
VGS = 0V
2.0
A
2.5
1 0.1
TA = 25 °C TJ = 150 °C Single Pulse
1 10
10ms
100
VSD , Source-to-Drain Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
6.0 5.0
Fig 8. Maximum Safe Operating Area
VDS VGS RG 4.5V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
RD
I D , Drain Current (A)
D.U.T.
+
4.0
V - DD
3.0
2.0
1.0
Fig 10a. Switching Time Test Circuit
25 50 75 100 125 150
0.0
TC , Case Temperature
( °C)
VDS 90%
Fig 9. Maximum Drain Current Vs. Ambient Temperature
Current Regulator Same Type as D.U.T.
10% VGS
td(on) tr t d(off) tf
50KΩ 12V .2µF .3µF
Fig 10b. Switching Time Waveforms
D.U.T. + V - DS
4.5V
QGS
QG QGD
VGS
3mA
VG
IG ID
Charge
Current Sampling Resistors
Fig 11a. Gate Charge Test Circuit
Fig 11b. Basic Gate Charge Waveform
P-Channel
100
TOP VGS - 7.5V - 5.0V - 4.0V - 3.5V - 3.0V - 2.5V - 2.0V BOTTOM - 1.5V
IRF7307PbF
100
-ID , Drain-to-Source Current (A)
10
-ID , Drain-to-Source Current (A)
VGS - 7.5V - 5.0V - 4.0V - 3.5V - 3.0V - 2.5V - 2.0V BOTTOM - 1.5V TOP
10
1
1
-1.5V
-1.5V 20µs PULSE WIDTH TJ = 25°C A
0.1 1 10 100
0.1 0.01
0.1 0.01
20µs PULSE WIDTH TJ = 150°C
0.1 1 10
100
A
-VDS , Drain-to-Source Voltage (V)
-VDS , Drain-to-Source Voltage (V)
Fig 12. Typical Output Characteristics
100
Fig 13. Typical Output Characteristics
2.0
R DS(on) , Drain-to-Source On Resistance (Normalized)
I D = -3.6A
-ID , Drain-to-Source Current (A)
TJ = 25°C
10
1.5
TJ = 150°C
1.0
1
0.5
0.1 1.5 2.0 2.5 3.0
VDS = -15V 20µs PULSE WIDTH
3.5 4.0 4.5 5.0
A
0.0 -60
VGS = -4.5V
-40 -20 0 20 40 60 80
100 120 140 160
A
-VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature (°C)
Fig 14. Typical Transfer Characteristics
1500
Fig 15. Normalized On-Resistance Vs. Temperature
10
-VGS , Gate-to-Source Voltage (V)
V GS = 0V, f = 1MHz C iss = Cgs + C gd , Cds SHORTED C rss = C gd C oss = C ds + C gd
I D = - 2.2A VDS = -16V
8
C, Capacitance (pF)
Ciss
1000
C oss Crss
500
6
4
2
0 1 10 100
A
0 0 5 10
FOR TEST CIRCUIT SEE FIGURE 22
15 20 25
A
-VDS , Drain-to-Source Voltage (V)
Q G , Total Gate Charge (nC)
Fig 16. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 17. Typical Gate Charge Vs. Gate-to-Source Voltage
IRF7307PbF
100
P-Channel
100
-ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED BY RDS(on)
10
TJ = 150°C TJ = 25°C
-ID , Drain Current (A) I
10 1ms
1
0.1 0.3 0.6 0.9 1.2
VGS = 0V
A
1
TA = 25 °C TJ = 150 °C Single Pulse
1 10
10ms
1.5
100
-VSD , Source-to-Drain Voltage (V)
-VDS , Drain-to-Source Voltage (V)
Fig 18. Typical Source-Drain Diode Forward Voltage
5.0
Fig 19. Maximum Safe Operating Area
VDS VGS RG RD
4.0
D.U.T.
+
-ID , Drain Current (A)
3.0
-4.5V
2.0
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
1.0
Fig 21a. Switching Time Test Circuit
25 50 75 100 125 150
0.0
TC , Case Temperature
( °C)
VDS 90%
Fig 20. Maximum Drain Current Vs. Ambient Temperature
Current Regulator Same Type as D.U.T.
10% VGS
td(on) tr t d(off) tf
50KΩ 12V .2µF .3µF
Fig 21b. Switching Time Waveforms
+ D.U.T. VDS
-4.5V
QGS
QG QGD
VGS
-3mA
VG
IG ID
Charge
Current Sampling Resistors
Fig 22a. Gate Charge Test Circuit
Fig 22b. Basic Gate Charge Waveform
-
VDD
N & P-Channel
100
IRF7307PbF
Thermal Response (Z thJA )
D = 0.50 0.20 10 0.10 0.05 0.02 1 0.01 SINGLE PULSE (THERMAL RESPONSE) PDM t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJA + TA 0.001 0.01 0.1 1 10 100
0.1 0.0001
t1, Rectangular Pulse Duration (sec)
Fig 23. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
IRF7307PbF
Peak Diode Recovery dv/dt Test Circuit
D.U.T
+
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
-
+
RG VGS*
**
• dv/dt controlled by RG • ISD controlled by Duty Factor "D" • D.U.T. - Device Under Test
+ -
VDD
*
*
Reverse Polarity for P-Channel ** Use P-Channel Driver for P-Channel Measurements
Driver Gate Drive P.W. Period D=
P.W. Period
[VGS=10V ] ***
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
[VDD]
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple ≤ 5%
[ISD ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 24. For N and P Channel HEXFETS
IRF7307PbF
SO-8 Package Outline
Dimensions are shown in milimeters (inches)
D A 5 B
DIM A b INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMET ERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
c D E e e1 H
1
2
3
4
.050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8°
1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8°
6X
e
K L y
e1
A
K x 45° C 0.10 [.004] y 8X c
8X b 0.25 [.010]
A1 CAB
8X L 7
NOT ES : 1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994. 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ]. 4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010]. 7 DIMENS ION IS T HE LENGT H OF LEAD FOR S OLDERING T O A SUBS T RAT E. 3X 1.27 [.050] 6.46 [.255]
FOOT PRINT 8X 0.72 [.028]
8X 1.78 [.070]
SO-8 Part Marking Information (Lead-Free)
EXAMPLE: T HIS IS AN IRF7101 (MOSFET ) DAT E CODE (YWW) P = DES IGNAT ES LEAD-FREE PRODUCT (OPTIONAL) Y = LAST DIGIT OF T HE YEAR WW = WEEK A = AS SEMBLY S IT E CODE LOT CODE PART NUMBER
INT ERNAT IONAL RECT IFIER LOGO
XXXX F 7101
IRF7307PbF
SO-8 Tape and Reel
Dimensions are shown in milimeters (inches)
TERMINAL NUMBER 1
12.3 ( .484 ) 11.7 ( .461 )
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00 (12.992) MAX.
14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/04