PD - 94531A
IRF7475
HEXFET® Power MOSFET
Applications l High Frequency Point-of-Load Synchronous Buck Converter for Applications in Networking & Computing Systems. Benefits l Very Low RDS(on) at 4.5V VGS l Ultra-Low Gate Impedance l Fully Characterized Avalanche Voltage and Current
VDSS
12V
15m:@VGS = 4.5V
A A D D D D
RDS(on) max
Qg
19nC
S S S G
1
8 7
2
3
6
4
5
Top View
SO-8
Absolute Maximum Ratings
Parameter
VDS VGS ID @ TA = 25°C ID @ TA = 100°C IDM PD @TA = 25°C PD @TA = 70°C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current
Max.
12 ± 12 11 7.0 88 2.5 1.6 0.02 -55 to + 150
Units
V
g Power Dissipation g
Power Dissipation
c
A W
Linear Derating Factor Operating Junction and Storage Temperature Range
W/°C °C
Thermal Resistance
Parameter
RθJL RθJA Junction-to-Drain Lead Junction-to-Ambient
Typ.
––– –––
Max.
20 50
Units
°C/W
f
Notes through are on page 10
www.irf.com
1
11/12/02
IRF7475
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th) IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss td(on) tr td(off) tf Ciss Coss Crss Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
Min. Typ. Max. Units
12 ––– ––– ––– 0.6 ––– ––– ––– ––– ––– 22 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.014 11.5 20 ––– 3.2 ––– ––– ––– ––– ––– 13 2.6 1.5 3.9 5.0 5.4 17 7.5 33 13 7.5 1590 1310 260 ––– ––– 15 50 2.0 ––– 100 250 200 -200 ––– 19 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– pF VGS = 0V VDS = 6.0V ns nC nC VDS = 6.0V VGS = 4.5V ID = 7.0A S nA V mV/°C µA V mΩ
Conditions
VGS = 0V, ID = 250µA VGS = 4.5V, ID = 8.8A VGS = 2.8V, ID = 5.5A
V/°C Reference to 25°C, ID = 1mA
f f
VDS = VGS, ID = 250µA VDS = 9.6V, VGS = 0V VDS = 9.6V, VGS = 0V, TJ = 125°C VGS = 12V VGS = -12V VDS = 6.0V, ID = 8.8A
See Fig. 16 VDS = 10V, VGS = 0V VDD = 6.0V, VGS = 4.5V ID = 8.8A Clamped Inductive Load
f
ƒ = 1.0MHz
Avalanche Characteristics
EAS IAR EAR Parameter Single Pulse Avalanche Energy Avalanche Current
dh
Typ. ––– ––– –––
Max. 180 8.8 0.25
Units mJ A mJ
Repetitive Avalanche Energy
––– ––– ––– ––– ––– ––– ––– ––– 42 44
Diode Characteristics
Parameter
IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min. Typ. Max. Units
11 A 88 1.3 63 66 V ns nC
Conditions
MOSFET symbol showing the integral reverse
G D
Ãh
S p-n junction diode. TJ = 25°C, IS = 8.8A, VGS = 0V
f
TJ = 25°C, IF = 8.8A, VDD = 10V di/dt = 100A/µs
f
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.irf.com
IRF7475
100 VGS TOP 10V 8.0V 4.5V 3.5V 3.0V 2.8V 2.25V BOTTOM 2.0V
100 VGS 10V 8.0V 4.5V 3.5V 3.0V 2.8V 2.25V BOTTOM 2.0V TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
10
10
2.0V
1
2.0V
1
20µs PULSE WIDTH TJ = 25°C
0.1 0.1
0.1
20µs PULSE WIDTH TJ = 150°C
1 10 100
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
2.0
RDS(on), Drain-to-Source On Resistance
ID = 11A VGS = 4.5V
ID, Drain-to-Source Current (A)
1.5
10
TJ = 150°C
(Normalized)
1.0
TJ = 25°C
0.5
VDS = 10V 20µs PULSE WIDTH
1 1 2 3 4 5
0.0 -60 -40 -20 0 20 40 60 80 100 120 140 160
VGS, Gate-to-Source Voltage
TJ, Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRF7475
10000
VGS, Gate-to-Source Voltage (V)
VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd
6
ID = 7.0A VDS = 12V VDS = 6.0V
5
C, Capacitance (pF)
4
Ciss
1000
Coss
3
2
1
Crss
100 1 10 100
0 0 5 10 15 20
VDS, Drain-to-Source voltage (V)
QG, Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
100
1000
OPERATION IN THIS AREA LIMITED BY RDS(on)
ISD, Reverse Drain Current (A) TJ = 150ºC
10
ID, Drain-to-Source Current (A)
100
10µsec
10
1msec 10msec
1
TJ = 25ºC
1
VGS = 0V
0.1 0.0 0.5 1.0 1.5 2.0
TC = 25ºC TJ = 150ºC Single Pulse
0.1 0.1 1 10 100
VSD, Source-to-Drain Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRF7475
12
1.6
VGS(th), Gate Threshold Voltage (V)
ID , Drain Current (A)
9
1.4
ID = 250µA
1.2
6
3
1.0
0
0.8
25
50
75
100
125
150
-75
-50
-25
0
25
50
75
100
125
150
TC , Case Temperature ( ° C)
TJ, Temperature (°C)
Fig 9. Maximum Drain Current Vs. Case Temperature
Fig 10. Threshold Voltage Vs. Temperature
100
Thermal Response (Z thJA )
D = 0.50 0.20 0.10 0.05 0.02 0.01 PDM t1 t2 SINGLE PULSE (THERMAL RESPONSE) 0.1 0.00001 0.0001 0.001 0.01 0.1 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJA + TA 1 10 100
10
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF7475
500
EAS , Single Pulse Avalanche Energy (mJ)
15V
VDS
L
DRIVER
400
ID 3.9A 7.0A BOTTOM 8.8A TOP
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
300
A
0.01Ω
200
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS tp
100
0 25 50 75 100 125 150
Starting T J , Junction Temperature (°C)
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
I AS
V DS VGS RG
Current Regulator Same Type as D.U.T.
RD
Fig 12b. Unclamped Inductive Waveforms
D.U.T.
+
-VDD
VGS
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
50KΩ 12V .2µF .3µF
Fig 14a. Switching Time Test Circuit
D.U.T. + V - DS
VDS 90%
VGS
3mA
IG
ID
10% VGS
td(on) tr t d(off) tf
Current Sampling Resistors
Fig 13. Gate Charge Test Circuit
Fig 14b. Switching Time Waveforms
6
www.irf.com
IRF7475
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
+
RG
• • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
V DD
VDD
+ -
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Id Vds Vgs
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 16. Gate Charge Waveform
www.irf.com
7
IRF7475
Power MOSFET Selection for Non-Isolated DC/DC Converters
Control FET Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the Rds(on) of the MOSFET, but these conduction losses are only about one half of the total losses. Power losses in the control switch Q1 are given by; Synchronous FET The power loss equation for Q2 is approximated by;
* Ploss = Pconduction + P + Poutput drive
Ploss = Irms × Rds(on)
+ ( g × Vg × f ) Q
(
2
)
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput
This can be expanded and approximated by;
Q + oss × Vin × f + (Qrr × Vin × f ) 2
*dissipated primarily in Q1. For the synchronous MOSFET Q2, Rds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Qoss and reverse recovery charge Qrr both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs’ susceptibility to Cdv/dt turn on. The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and Vin. As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current . The ratio of Qgd/Qgs1 must be minimized to reduce the potential for Cdv/dt turn on.
Ploss = (Irms 2 × Rds(on ) ) Qgs 2 Qgd +I × × Vin × f + I × × Vin × f ig ig + (Qg × Vg × f ) + Qoss × Vin × f 2
This simplified loss equation includes the terms Qgs2 and Qoss which are new to Power MOSFET data sheets. Qgs2 i s a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Qgs1 and Qgs2, can be seen from Fig 16. Qgs2 indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to Idmax at which time the drain voltage begins to change. Minimizing Qgs2 is a critical factor in reducing switching losses in Q1. Qoss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Qoss is formed by the parallel combination of the voltage dependant (nonlinear) capacitances Cds and Cdg when multiplied by the power supply input buss voltage.
Figure A: Qoss Characteristic
8
www.irf.com
IRF7475
SO-8 Package Details
9 6 ' & ! % " $ 7
9DH 6 6 i DI8C@T HDI H6Y $"! %'' # " &$ '( (' ! (' (%' HDGGDH@U@ST HDI H6Y "$ &$ "" ( #' !$ $ !$ $
% @
$ #
C !$Ãb dÃ
6
p 9 @ r r C
#(& $ $ÃÃ76TD8 !$ÃÃ76TD8 !!'# !## (( % Ã (% $ Ã'
"' # !&ÃÃ76TD8 %"$ÃÃ76TD8 $' %! !$ # Ã $ !& Ã'
%Y r
F G
r
6
FÃÃ#$ 8 Ãb#dà 'YÃG & 'YÃp
'YÃi !$Ãb dÃ
6 867
IPU@T) ÃÃ9DH@ITDPIDIBÃÉÃUPG@S6I8DIBÃQ@SÃ6TH@Ã` #$H ((# !ÃÃ8PIUSPGGDIBÃ9DH@ITDPI)ÃHDGGDH@U@S "ÃÃ9DH@ITDPITÃ6S@ÃTCPXIÃDIÃHDGGDH@U@STÃbDI8C@Td #ÃÃPVUGDI@Ã8PIAPSHTÃUPÃE@9@8ÃPVUGDI@ÃHT !66 $ÃÃÃ9DH@ITDPIÃ9P@TÃIPUÃDI8GV9@ÃHPG9ÃQSPUSVTDPIT ÃÃÃÃÃHPG9ÃQSPUSVTDPITÃIPUÃUPÃ@Y8@@9Ã $Ãb%d %ÃÃÃ9DH@ITDPIÃ9P@TÃIPUÃDI8GV9@ÃHPG9ÃQSPUSVTDPIT ÃÃÃÃÃHPG9ÃQSPUSVTDPITÃIPUÃUPÃ@Y8@@9Ã!$Ãb d &ÃÃÃ9DH@ITDPIÃDTÃUC@ÃG@IBUCÃPAÃG@69ÃAPSÃTPG9@SDIBÃUP ÃÃÃÃÃ6ÃTV7TUS6U@
APPUQSDIU 'YÃ&!Ãb!'d
%#%Ãb!$$d
"YÃ !&Ãb$d
'YÃ &'Ãb&d
SO-8 Part Marking
@Y6HQG@)ÃUCDTÃDTÃ6IÃDSA& ÃHPTA@U 96U@Ã8P9@Ã`XX `Ã2ÃG6TUÃ9DBDUÃPAÃUC@Ã`@6S XXÃ2ÃX@@F GPUÃ8P9@ Q6SUÃIVH7@S
9
DIU@SI6UDPI6G S@8UDAD@S GPBP
www.irf.com