0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF7475

IRF7475

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRF7475 - HEXFET Power MOSFET Selection for Non-Isolated DC/DC Converters - International Rectifier

  • 数据手册
  • 价格&库存
IRF7475 数据手册
PD - 94531A IRF7475 HEXFET® Power MOSFET Applications l High Frequency Point-of-Load Synchronous Buck Converter for Applications in Networking & Computing Systems. Benefits l Very Low RDS(on) at 4.5V VGS l Ultra-Low Gate Impedance l Fully Characterized Avalanche Voltage and Current VDSS 12V 15m:@VGS = 4.5V A A D D D D RDS(on) max Qg 19nC S S S G 1 8 7 2 3 6 4 5 Top View SO-8 Absolute Maximum Ratings Parameter VDS VGS ID @ TA = 25°C ID @ TA = 100°C IDM PD @TA = 25°C PD @TA = 70°C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Max. 12 ± 12 11 7.0 88 2.5 1.6 0.02 -55 to + 150 Units V g Power Dissipation g Power Dissipation c A W Linear Derating Factor Operating Junction and Storage Temperature Range W/°C °C Thermal Resistance Parameter RθJL RθJA Junction-to-Drain Lead Junction-to-Ambient Typ. ––– ––– Max. 20 50 Units °C/W f Notes  through ƒ are on page 10 www.irf.com 1 11/12/02 IRF7475 Static @ TJ = 25°C (unless otherwise specified) Parameter BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th) IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss td(on) tr td(off) tf Ciss Coss Crss Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units 12 ––– ––– ––– 0.6 ––– ––– ––– ––– ––– 22 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.014 11.5 20 ––– 3.2 ––– ––– ––– ––– ––– 13 2.6 1.5 3.9 5.0 5.4 17 7.5 33 13 7.5 1590 1310 260 ––– ––– 15 50 2.0 ––– 100 250 200 -200 ––– 19 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– pF VGS = 0V VDS = 6.0V ns nC nC VDS = 6.0V VGS = 4.5V ID = 7.0A S nA V mV/°C µA V mΩ Conditions VGS = 0V, ID = 250µA VGS = 4.5V, ID = 8.8A VGS = 2.8V, ID = 5.5A V/°C Reference to 25°C, ID = 1mA f f VDS = VGS, ID = 250µA VDS = 9.6V, VGS = 0V VDS = 9.6V, VGS = 0V, TJ = 125°C VGS = 12V VGS = -12V VDS = 6.0V, ID = 8.8A See Fig. 16 VDS = 10V, VGS = 0V VDD = 6.0V, VGS = 4.5V ID = 8.8A Clamped Inductive Load f ƒ = 1.0MHz Avalanche Characteristics EAS IAR EAR Parameter Single Pulse Avalanche Energy Avalanche Current ™ dh Typ. ––– ––– ––– Max. 180 8.8 0.25 Units mJ A mJ Repetitive Avalanche Energy ™ ––– ––– ––– ––– ––– ––– ––– ––– 42 44 Diode Characteristics Parameter IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units 11 A 88 1.3 63 66 V ns nC Conditions MOSFET symbol showing the integral reverse G D Ùh S p-n junction diode. TJ = 25°C, IS = 8.8A, VGS = 0V f TJ = 25°C, IF = 8.8A, VDD = 10V di/dt = 100A/µs f Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 2 www.irf.com IRF7475 100 VGS TOP 10V 8.0V 4.5V 3.5V 3.0V 2.8V 2.25V BOTTOM 2.0V 100 VGS 10V 8.0V 4.5V 3.5V 3.0V 2.8V 2.25V BOTTOM 2.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 10 10 2.0V 1 2.0V 1 20µs PULSE WIDTH TJ = 25°C 0.1 0.1 0.1 20µs PULSE WIDTH TJ = 150°C 1 10 100 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100 2.0 RDS(on), Drain-to-Source On Resistance ID = 11A VGS = 4.5V ID, Drain-to-Source Current (A) 1.5 10 TJ = 150°C (Normalized) 1.0 TJ = 25°C 0.5 VDS = 10V 20µs PULSE WIDTH 1 1 2 3 4 5 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 VGS, Gate-to-Source Voltage TJ, Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com 3 IRF7475 10000 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd 6 ID = 7.0A VDS = 12V VDS = 6.0V 5 C, Capacitance (pF) 4 Ciss 1000 Coss 3 2 1 Crss 100 1 10 100 0 0 5 10 15 20 VDS, Drain-to-Source voltage (V) QG, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 100 1000 OPERATION IN THIS AREA LIMITED BY RDS(on) ISD, Reverse Drain Current (A) TJ = 150ºC 10 ID, Drain-to-Source Current (A) 100 10µsec 10 1msec 10msec 1 TJ = 25ºC 1 VGS = 0V 0.1 0.0 0.5 1.0 1.5 2.0 TC = 25ºC TJ = 150ºC Single Pulse 0.1 0.1 1 10 100 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRF7475 12 1.6 VGS(th), Gate Threshold Voltage (V) ID , Drain Current (A) 9 1.4 ID = 250µA 1.2 6 3 1.0 0 0.8 25 50 75 100 125 150 -75 -50 -25 0 25 50 75 100 125 150 TC , Case Temperature ( ° C) TJ, Temperature (°C) Fig 9. Maximum Drain Current Vs. Case Temperature Fig 10. Threshold Voltage Vs. Temperature 100 Thermal Response (Z thJA ) D = 0.50 0.20 0.10 0.05 0.02 0.01 PDM t1 t2 SINGLE PULSE (THERMAL RESPONSE) 0.1 0.00001 0.0001 0.001 0.01 0.1 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJA + TA 1 10 100 10 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF7475 500 EAS , Single Pulse Avalanche Energy (mJ) 15V VDS L DRIVER 400 ID 3.9A 7.0A BOTTOM 8.8A TOP RG VGS 20V D.U.T IAS tp + V - DD 300 A 0.01Ω 200 Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 12c. Maximum Avalanche Energy Vs. Drain Current I AS V DS VGS RG Current Regulator Same Type as D.U.T. RD Fig 12b. Unclamped Inductive Waveforms D.U.T. + -VDD VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 50KΩ 12V .2µF .3µF Fig 14a. Switching Time Test Circuit D.U.T. + V - DS VDS 90% VGS 3mA IG ID 10% VGS td(on) tr t d(off) tf Current Sampling Resistors Fig 13. Gate Charge Test Circuit Fig 14b. Switching Time Waveforms 6 www.irf.com IRF7475 D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD VDD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Vgs Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 16. Gate Charge Waveform www.irf.com 7 IRF7475 Power MOSFET Selection for Non-Isolated DC/DC Converters Control FET Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the Rds(on) of the MOSFET, but these conduction losses are only about one half of the total losses. Power losses in the control switch Q1 are given by; Synchronous FET The power loss equation for Q2 is approximated by; * Ploss = Pconduction + P + Poutput drive Ploss = Irms × Rds(on) + ( g × Vg × f ) Q ( 2 ) Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput This can be expanded and approximated by; Q  +  oss × Vin × f + (Qrr × Vin × f ) 2  *dissipated primarily in Q1. For the synchronous MOSFET Q2, Rds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Qoss and reverse recovery charge Qrr both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs’ susceptibility to Cdv/dt turn on. The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and Vin. As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current . The ratio of Qgd/Qgs1 must be minimized to reduce the potential for Cdv/dt turn on. Ploss = (Irms 2 × Rds(on ) )  Qgs 2 Qgd   +I × × Vin × f  +  I × × Vin × f  ig ig    + (Qg × Vg × f ) +  Qoss × Vin × f  2  This simplified loss equation includes the terms Qgs2 and Qoss which are new to Power MOSFET data sheets. Qgs2 i s a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Qgs1 and Qgs2, can be seen from Fig 16. Qgs2 indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to Idmax at which time the drain voltage begins to change. Minimizing Qgs2 is a critical factor in reducing switching losses in Q1. Qoss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Qoss is formed by the parallel combination of the voltage dependant (nonlinear) capacitance’s Cds and Cdg when multiplied by the power supply input buss voltage. Figure A: Qoss Characteristic 8 www.irf.com IRF7475 SO-8 Package Details 9 6 ' & ! % " $ 7 9DH 6 6 i DI8C@T HDI H6Y $"! %'' #  " &$  '( (' ! ('  (%' HDGGDH@U@ST HDI H6Y "$ &$   ""  ( #' !$ $ !$ $ % @ $ # C !$Ãb dà 6 p 9 @ r r C  #(&  $&# $ÃÃ76TD8 !$ÃÃ76TD8 !!'# !## ((  % à  (% $ Ã'ƒ "' # !&ÃÃ76TD8 %"$ÃÃ76TD8 $' %! !$ # à $ !& Ã'ƒ %Y r F G ’ r 6 FÑÃ#$ƒ 8  Ãb#dà ’ 'YÃG & 'YÃp 'YÃi !$Ãb dà 6 867 IPU@T) ÃÃ9DH@ITDPIDIBÃÉÃUPG@S6I8DIBÃQ@SÃ6TH@Ã` #$H ((# !ÃÃ8PIUSPGGDIBÃ9DH@ITDPI)ÃHDGGDH@U@S "ÃÃ9DH@ITDPITÃ6S@ÃTCPXIÃDIÃHDGGDH@U@STÃbDI8C@Td #ÃÃPVUGDI@Ã8PIAPSHTÃUPÃE@9@8ÃPVUGDI@ÃHT !66 $ÃÃÃ9DH@ITDPIÃ9P@TÃIPUÃDI8GV9@ÃHPG9ÃQSPUSVTDPIT ÃÃÃÃÃHPG9ÃQSPUSVTDPITÃIPUÃUPÃ@Y8@@9à $Ãb%d %ÃÃÃ9DH@ITDPIÃ9P@TÃIPUÃDI8GV9@ÃHPG9ÃQSPUSVTDPIT ÃÃÃÃÃHPG9ÃQSPUSVTDPITÃIPUÃUPÃ@Y8@@9Ã!$Ãb d &ÃÃÃ9DH@ITDPIÃDTÃUC@ÃG@IBUCÃPAÃG@69ÃAPSÃTPG9@SDIBÃUP ÃÃÃÃÃ6ÃTV7TUS6U@ APPUQSDIU 'YÃ&!Ãb!'d %#%Ãb!$$d "Yà !&Ãb$d 'Yà &'Ãb&d SO-8 Part Marking @Y6HQG@)ÃUCDTÃDTÃ6IÃDSA&  ÃHPTA@U 96U@Ã8P9@Ã`XX `Ã2ÃG6TUÃ9DBDUÃPAÃUC@Ã`@6S XXÃ2ÃX@@F GPUÃ8P9@ Q6SUÃIVH7@S 9 DIU@SI6UDPI6G S@8UDAD@S GPBP www.irf.com
IRF7475 价格&库存

很抱歉,暂时无法提供与“IRF7475”相匹配的价格&库存,您可以联系我们找货

免费人工找货