0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF7484Q

IRF7484Q

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRF7484Q - AUTOMOTIVE MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRF7484Q 数据手册
PD - 94803A AUTOMOTIVE MOSFET Typical Applications Relay replacement Anti-lock Braking System Air Bag HEXFET® Power MOSFET IRF7484Q ID 14A VDSS RDS(on) max (mW) 40V 10@VGS = 7.0V Benefits Advanced Process Technology Ultra Low On-Resistance Fast Switching Repetitive Avalanche Allowed up to Tjmax S S 1 2 3 4 8 7 A A D D D D Description Specifically designed for Automotive applications, this Stripe Planar design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 150°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. S G 6 5 Top View SO-8 Absolute Maximum Ratings Parameter ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C VGS EAS IAR EAR TJ, TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current  Power Dissipationƒ Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy„ Avalanche Current Repetitive Avalanche Energy† Junction and Storage Temperature Range Max. 14 11 110 2.5 0.02 ± 8.0 230 See Fig.16c, 16d, 19, 20 -55 to + 150 Units A W W/°C V mJ A mJ °C Thermal Resistance Symbol RθJL RθJA Parameter Junction-to-Drain Lead Junction-to-Ambient ƒ Typ. ––– ––– Max. 20 50 Units °C/W www.irf.com 1 01/04/05 IRF7484Q Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. 40 ––– ––– 1.0 40 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.040 ––– ––– ––– ––– ––– ––– ––– 69 9.0 16 9.3 5.0 180 58 3520 660 76 Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 10 mΩ VGS = 7.0V, ID = 14A ‚ 2.0 V VDS = VGS, ID = 250µA ––– S VDS = 10V, ID = 14A 20 VDS = 40V, VGS = 0V µA 250 VDS = 32V, VGS = 0V, TJ = 125°C 200 VGS = 8.0V nA -200 VGS = -8.0V 100 ID = 14A ––– nC VDS = 32V ––– VGS = 7.0V ––– VDD = 20V ‚ ––– ID = 1.0A ns ––– RG = 6.2Ω ––– VGS = 7.0V ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)  Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– 59 110 2.3 A 110 1.3 89 170 V ns nC Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 2.3A, VGS = 0V TJ = 25°C, IF = 2.3A di/dt = 100A/µs ‚ D S ‚ Notes:  Repetitive rating; pulse width limited by max. junction temperature. ‚ Pulse width ≤ 400µs; duty cycle ≤ 2%. ƒ Surface mounted on 1 in square Cu board. „ Starting TJ = 25°C, L = 2.3mH, RG = 25Ω, IAS = 14A. (See Figure 12). … ISD ≤ 14A, di/dt ≤ 140A/µs, VDD ≤ V(BR)DSS, † Limited by TJmax , see Fig.16c, 16d, 19, 20 for typical repetitive avalanche performance. TJ ≤ 150°C. 2 www.irf.com IRF7484Q 100000 10000 1000 100 10 1 0.1 0.01 0.1 1 10 100 VGS 7.5V 7.0V 4.5V 3.0V 2.5V 2.3V 2.0V BOTTOM 1.8V TOP 10000 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 1000 100 VGS 7.5V 7.0V 4.5V 3.0V 2.5V 2.3V 2.0V BOTTOM 1.8V TOP 10 1.8V 1 1.8V 20µs PULSE WIDTH Tj = 25°C 20µs PULSE WIDTH Tj = 150°C 0.1 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000.00 2.0 I D = 14A ID, Drain-to-Source Current (Α ) R DS(on) , Drain-to-Source On Resistance 100.00 1.5 10.00 TJ = 150°C (Normalized) 1.0 1.00 T J = 25°C VDS = 15V 20µs PULSE WIDTH 1.0 2.0 3.0 4.0 0.5 0.10 0.0 -60 -40 -20 0 20 40 60 80 100 V GS = 10V 120 140 160 VGS, Gate-to-Source Voltage (V) TJ , Junction Temperature ( ° C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com 3 IRF7484Q 100000 VGS = 0V, f = 1 MHZ Ciss = C + Cgd, C gs ds SHORTED Crss = C gd Coss = C + Cgd ds VGS , Gate-to-Source Voltage (V) 8 ID = 14A 7 VDS = 32V VDS = 20V VDS = 8V 10000 6 C, Capacitance(pF) Ciss 1000 5 Coss 4 3 100 Crss 2 1 10 1 10 100 0 0 10 20 30 40 50 60 70 80 VDS, Drain-to-Source Voltage (V) QG, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 T J = 150°C 10 T J = 25°C 1 VGS = 0V 0.10 0.2 0.4 0.6 0.8 1.0 1.2 1.4 VSD, Source-to-Drain Voltage (V) ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 100µsec 10 1msec 10msec Tc = 25°C Tj = 150°C Single Pulse 0 1 10 100 1000 1 0.1 VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRF7484Q 15 VDS 12 RD VGS RG D.U.T. + ID , Drain Current (A) 9 -V DD VGS 6 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 3 Fig 10a. Switching Time Test Circuit VDS 90% 25 50 75 100 125 150 0 TC , Case Temperature ( ° C) Fig 9. Maximum Drain Current Vs. Case Temperature 10% VGS td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms 100 (Z thJA ) D = 0.50 10 0.20 0.10 Thermal Response 0.05 P DM t1 t2 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = 2. Peak T 0.1 0.0001 0.001 0.01 0.1 1 t1/ t 2 +T A 100 100 J = P DM x Z thJA 0.02 1 0.01 10 t 1, Rectangular Pulse Duration (sec) Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 IRF7484Q RDS(on) , Drain-to -Source On Resistance (mΩ ) 16.0 15.0 14.0 13.0 12.0 11.0 10.0 9.0 8.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 RDS (on) , Drain-to-Source On Resistance (mΩ ) 9.40 9.30 9.20 9.10 9.00 8.90 8.80 8.70 8.60 0 20 40 60 80 100 120 ID , Drain Current (A) VGS = 7.0V ID = 14A VGS, Gate -to -Source Voltage (V) Fig 12. Typical On-Resistance Vs. Gate Voltage Fig 13. Typical On-Resistance Vs. Drain Current 1.8 50 VGS(th) Gate threshold Voltage (V) 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 -75 -50 -25 0 25 50 75 100 125 150 40 Power (W) ID = 250µA 30 20 10 0 1.00 10.00 100.00 1000.00 T J , Temperature ( °C ) Time (sec) 6 Fig 14. Typical Threshold Voltage Vs. Junction Temperature Fig 15. Typical Power Vs. Time www.irf.com IRF7484Q 520 TOP 416 ID 6.3A 11A 14A 15V BOTTOM EAS , Single Pulse Avalanche Energy (mJ) 312 VDS L DRIVER 208 RG 20V D.U.T IAS + V - DD A 104 tp 0.01Ω Fig 16c. Unclamped Inductive Test Circuit 0 25 50 75 100 125 150 Starting Tj, Junction Temperature ( ° C) Fig 16a. Maximum Avalanche Energy Vs. Drain Current V(BR)DSS tp I AS Fig 16d. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF QG VGS D.U.T. + V - DS QGS VG QGD VGS 3mA IG ID Current Sampling Resistors Charge Fig 17. Gate Charge Test Circuit Fig 18. Basic Gate Charge Waveform www.irf.com 7 IRF7484Q 100 Duty Cycle = Single Pulse 10 Avalanche Current (A) 0.01 1 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.05 0.10 0.1 0.01 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 tav (sec) Fig 19. Typical Avalanche Current Vs.Pulsewidth 250 225 EAR , Avalanche Energy (mJ) 200 175 150 125 100 75 50 25 0 25 50 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 14A 75 100 125 150 Starting T J , Junction Temperature (°C) Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = t av ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave) ·tav Fig 20. Maximum Avalanche Energy Vs. Temperature 8 www.irf.com IRF7484Q SO-8 Package Details 9 6 ' & ! % " $ 7 9DH 6 6 i DI8C@T HDI H6Y $"! %'' #  " &$  '( (' ! ('  (%' HDGGDH@U@ST HDI H6Y "$ &$   ""  ( #' !$ $ !$ $ % @ $ # C !$Ãb dà 6 p 9 @ r r C  #(&  $&# $ÃÃ76TD8 !$ÃÃ76TD8 !!'# !## ((  % à  (% $ Ã'ƒ "' # !&ÃÃ76TD8 %"$ÃÃ76TD8 $' %! !$ # à $ !& Ã'ƒ %Y r F G ’ r 6 FÑÃ#$ƒ 8  Ãb#dà ’ 'YÃG & 'YÃp 'YÃi !$Ãb dà 6 867 IPU@T) ÃÃ9DH@ITDPIDIBÃÉÃUPG@S6I8DIBÃQ@SÃ6TH@Ã` #$H ((# !ÃÃ8PIUSPGGDIBÃ9DH@ITDPI)ÃHDGGDH@U@S "ÃÃ9DH@ITDPITÃ6S@ÃTCPXIÃDIÃHDGGDH@U@STÃbDI8C@Td #ÃÃPVUGDI@Ã8PIAPSHTÃUPÃE@9@8ÃPVUGDI@ÃHT !66 $ÃÃÃ9DH@ITDPIÃ9P@TÃIPUÃDI8GV9@ÃHPG9ÃQSPUSVTDPIT ÃÃÃÃÃHPG9ÃQSPUSVTDPITÃIPUÃUPÃ@Y8@@9à $Ãb%d %ÃÃÃ9DH@ITDPIÃ9P@TÃIPUÃDI8GV9@ÃHPG9ÃQSPUSVTDPIT ÃÃÃÃÃHPG9ÃQSPUSVTDPITÃIPUÃUPÃ@Y8@@9Ã!$Ãb d &ÃÃÃ9DH@ITDPIÃDTÃUC@ÃG@IBUCÃPAÃG@69ÃAPSÃTPG9@SDIBÃUP ÃÃÃÃÃ6ÃTV7TUS6U@ APPUQSDIU 'YÃ&!Ãb!'d %#%Ãb!$$d "Yà !&Ãb$d 'Yà &'Ãb&d SO-8 Part Marking @Y6HQG@)ÃUCDTÃDTÃ6IÃDSA&  ÃHPTA@U 96U@Ã8P9@Ã`XX `Ã2ÃG6TUÃ9DBDUÃPAÃUC@Ã`@6S XXÃ2ÃX@@F GPUÃ8P9@ Q6SUÃIVH7@S 9 DIU@SI6UDPI6G S@8UDAD@S GPBP www.irf.com
IRF7484Q 价格&库存

很抱歉,暂时无法提供与“IRF7484Q”相匹配的价格&库存,您可以联系我们找货

免费人工找货
AUIRF7484QTR

    库存:0