PD - 94803A
AUTOMOTIVE MOSFET
Typical Applications
Relay replacement Anti-lock Braking System Air Bag
HEXFET® Power MOSFET
IRF7484Q
ID
14A
VDSS RDS(on) max (mW)
40V 10@VGS = 7.0V
Benefits
Advanced Process Technology Ultra Low On-Resistance Fast Switching Repetitive Avalanche Allowed up to Tjmax
S S
1 2 3 4
8 7
A A D D D D
Description
Specifically designed for Automotive applications, this Stripe Planar design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 150°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.
S G
6 5
Top View
SO-8
Absolute Maximum Ratings
Parameter
ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C VGS EAS IAR EAR TJ, TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Junction and Storage Temperature Range
Max.
14 11 110 2.5 0.02 ± 8.0 230 See Fig.16c, 16d, 19, 20 -55 to + 150
Units
A W W/°C V mJ A mJ °C
Thermal Resistance
Symbol
RθJL RθJA
Parameter
Junction-to-Drain Lead Junction-to-Ambient
Typ.
––– –––
Max.
20 50
Units
°C/W
www.irf.com
1
01/04/05
IRF7484Q
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss
Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
Min. 40 ––– ––– 1.0 40 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
Typ. ––– 0.040 ––– ––– ––– ––– ––– ––– ––– 69 9.0 16 9.3 5.0 180 58 3520 660 76
Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 10 mΩ VGS = 7.0V, ID = 14A 2.0 V VDS = VGS, ID = 250µA ––– S VDS = 10V, ID = 14A 20 VDS = 40V, VGS = 0V µA 250 VDS = 32V, VGS = 0V, TJ = 125°C 200 VGS = 8.0V nA -200 VGS = -8.0V 100 ID = 14A ––– nC VDS = 32V ––– VGS = 7.0V ––– VDD = 20V ––– ID = 1.0A ns ––– RG = 6.2Ω ––– VGS = 7.0V ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz
Source-Drain Ratings and Characteristics
IS
ISM
VSD trr Qrr
Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge
Min. Typ. Max. Units ––– ––– ––– ––– 59 110 2.3 A 110 1.3 89 170 V ns nC
Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 2.3A, VGS = 0V TJ = 25°C, IF = 2.3A di/dt = 100A/µs
D
S
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. Surface mounted on 1 in square Cu board. Starting TJ = 25°C, L = 2.3mH, RG = 25Ω, IAS = 14A. (See Figure 12).
ISD ≤ 14A, di/dt ≤ 140A/µs, VDD ≤ V(BR)DSS, Limited by TJmax , see Fig.16c, 16d, 19, 20 for typical repetitive
avalanche performance. TJ ≤ 150°C.
2
www.irf.com
IRF7484Q
100000 10000 1000 100 10 1 0.1 0.01 0.1 1 10 100
VGS 7.5V 7.0V 4.5V 3.0V 2.5V 2.3V 2.0V BOTTOM 1.8V TOP
10000
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
1000
100
VGS 7.5V 7.0V 4.5V 3.0V 2.5V 2.3V 2.0V BOTTOM 1.8V TOP
10
1.8V
1
1.8V 20µs PULSE WIDTH Tj = 25°C
20µs PULSE WIDTH Tj = 150°C
0.1 0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000.00
2.0
I D = 14A
ID, Drain-to-Source Current (Α )
R DS(on) , Drain-to-Source On Resistance
100.00
1.5
10.00
TJ = 150°C
(Normalized)
1.0
1.00
T J = 25°C VDS = 15V 20µs PULSE WIDTH
1.0 2.0 3.0 4.0
0.5
0.10
0.0 -60 -40 -20 0 20 40 60 80 100
V GS = 10V
120 140 160
VGS, Gate-to-Source Voltage (V)
TJ , Junction Temperature
( ° C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRF7484Q
100000 VGS = 0V, f = 1 MHZ Ciss = C + Cgd, C gs ds SHORTED Crss = C gd Coss = C + Cgd ds
VGS , Gate-to-Source Voltage (V)
8
ID = 14A
7
VDS = 32V VDS = 20V VDS = 8V
10000
6
C, Capacitance(pF)
Ciss
1000
5
Coss
4
3
100
Crss
2
1
10 1 10 100
0 0 10 20 30 40 50 60 70 80
VDS, Drain-to-Source Voltage (V)
QG, Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
1000
1000
OPERATION IN THIS AREA LIMITED BY R DS(on)
100 T J = 150°C 10 T J = 25°C 1 VGS = 0V 0.10 0.2 0.4 0.6 0.8 1.0 1.2 1.4 VSD, Source-to-Drain Voltage (V)
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100 100µsec 10 1msec 10msec Tc = 25°C Tj = 150°C Single Pulse 0 1 10 100 1000
1
0.1
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRF7484Q
15
VDS
12
RD
VGS RG
D.U.T.
+
ID , Drain Current (A)
9
-V DD
VGS
6
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
3
Fig 10a. Switching Time Test Circuit
VDS 90%
25 50 75 100 125 150
0
TC , Case Temperature
( ° C)
Fig 9. Maximum Drain Current Vs. Case Temperature
10% VGS
td(on) tr t d(off) tf
Fig 10b. Switching Time Waveforms
100
(Z thJA )
D = 0.50
10
0.20 0.10
Thermal Response
0.05 P DM t1 t2 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = 2. Peak T 0.1 0.0001 0.001 0.01 0.1 1 t1/ t 2 +T A 100 100
J = P DM x Z thJA
0.02 1 0.01
10
t 1, Rectangular Pulse Duration (sec)
Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF7484Q
RDS(on) , Drain-to -Source On Resistance (mΩ )
16.0 15.0 14.0 13.0 12.0 11.0 10.0 9.0 8.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
RDS (on) , Drain-to-Source On Resistance (mΩ )
9.40 9.30 9.20 9.10 9.00 8.90 8.80 8.70 8.60 0 20 40 60 80 100 120 ID , Drain Current (A) VGS = 7.0V
ID = 14A
VGS, Gate -to -Source Voltage (V)
Fig 12. Typical On-Resistance Vs. Gate Voltage
Fig 13. Typical On-Resistance Vs. Drain Current
1.8
50
VGS(th) Gate threshold Voltage (V)
1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 -75 -50 -25 0 25 50 75 100 125 150
40
Power (W)
ID = 250µA
30
20
10
0 1.00 10.00 100.00 1000.00
T J , Temperature ( °C )
Time (sec)
6
Fig 14. Typical Threshold Voltage Vs. Junction Temperature
Fig 15. Typical Power Vs. Time
www.irf.com
IRF7484Q
520
TOP
416
ID 6.3A 11A 14A
15V
BOTTOM
EAS , Single Pulse Avalanche Energy (mJ)
312
VDS
L
DRIVER
208
RG
20V
D.U.T
IAS
+ V - DD
A
104
tp
0.01Ω
Fig 16c. Unclamped Inductive Test Circuit
0 25 50 75 100 125 150
Starting Tj, Junction Temperature
( ° C)
Fig 16a. Maximum Avalanche Energy Vs. Drain Current
V(BR)DSS tp
I AS
Fig 16d. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50KΩ 12V .2µF .3µF
QG
VGS
D.U.T. + V - DS
QGS VG
QGD
VGS
3mA
IG
ID
Current Sampling Resistors
Charge
Fig 17. Gate Charge Test Circuit
Fig 18. Basic Gate Charge Waveform
www.irf.com
7
IRF7484Q
100
Duty Cycle = Single Pulse
10
Avalanche Current (A)
0.01
1
Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses
0.05 0.10
0.1
0.01 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03
tav (sec)
Fig 19. Typical Avalanche Current Vs.Pulsewidth
250 225
EAR , Avalanche Energy (mJ)
200 175 150 125 100 75 50 25 0 25 50
TOP Single Pulse BOTTOM 10% Duty Cycle ID = 14A
75
100
125
150
Starting T J , Junction Temperature (°C)
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = t av ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave) ·tav
Fig 20. Maximum Avalanche Energy Vs. Temperature
8
www.irf.com
IRF7484Q
SO-8 Package Details
9 6 ' & ! % " $ 7
9DH 6 6 i DI8C@T HDI H6Y $"! %'' # " &$ '( (' ! (' (%' HDGGDH@U@ST HDI H6Y "$ &$ "" ( #' !$ $ !$ $
% @
$ #
C !$Ãb dÃ
6
p 9 @ r r C
#(& $ $ÃÃ76TD8 !$ÃÃ76TD8 !!'# !## (( % Ã (% $ Ã'
"' # !&ÃÃ76TD8 %"$ÃÃ76TD8 $' %! !$ # Ã $ !& Ã'
%Y r
F G
r
6
FÃÃ#$ 8 Ãb#dà 'YÃG & 'YÃp
'YÃi !$Ãb dÃ
6 867
IPU@T) ÃÃ9DH@ITDPIDIBÃÉÃUPG@S6I8DIBÃQ@SÃ6TH@Ã` #$H ((# !ÃÃ8PIUSPGGDIBÃ9DH@ITDPI)ÃHDGGDH@U@S "ÃÃ9DH@ITDPITÃ6S@ÃTCPXIÃDIÃHDGGDH@U@STÃbDI8C@Td #ÃÃPVUGDI@Ã8PIAPSHTÃUPÃE@9@8ÃPVUGDI@ÃHT !66 $ÃÃÃ9DH@ITDPIÃ9P@TÃIPUÃDI8GV9@ÃHPG9ÃQSPUSVTDPIT ÃÃÃÃÃHPG9ÃQSPUSVTDPITÃIPUÃUPÃ@Y8@@9Ã $Ãb%d %ÃÃÃ9DH@ITDPIÃ9P@TÃIPUÃDI8GV9@ÃHPG9ÃQSPUSVTDPIT ÃÃÃÃÃHPG9ÃQSPUSVTDPITÃIPUÃUPÃ@Y8@@9Ã!$Ãb d &ÃÃÃ9DH@ITDPIÃDTÃUC@ÃG@IBUCÃPAÃG@69ÃAPSÃTPG9@SDIBÃUP ÃÃÃÃÃ6ÃTV7TUS6U@
APPUQSDIU 'YÃ&!Ãb!'d
%#%Ãb!$$d
"YÃ !&Ãb$d
'YÃ &'Ãb&d
SO-8 Part Marking
@Y6HQG@)ÃUCDTÃDTÃ6IÃDSA& ÃHPTA@U 96U@Ã8P9@Ã`XX `Ã2ÃG6TUÃ9DBDUÃPAÃUC@Ã`@6S XXÃ2ÃX@@F GPUÃ8P9@ Q6SUÃIVH7@S
9
DIU@SI6UDPI6G S@8UDAD@S GPBP
www.irf.com