0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF7493

IRF7493

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRF7493 - HEXFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRF7493 数据手册
PD - 94654B IRF7493 HEXFET® Power MOSFET l Applications High frequency DC-DC converters VDSS 80V RDS(on) max 15m:@VGS=10V Qg (typ.) 35nC Benefits l Low Gate-to-Drain Charge to Reduce Switching Losses l Fully Characterized Capacitance Including Effective COSS to Simplify Design, (See App. Note AN1001) l Fully Characterized Avalanche Voltage and Current S S S G 1 8 A A D D D D 2 7 3 6 4 5 Top View SO-8 Absolute Maximum Ratings Parameter VDS VGS ID @ TC = 25°C ID @ TC = 70°C IDM PD @TC = 25°C PD @TC = 70°C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Max. 80 ± 20 9.3 7.4 74 2.5 1.6 0.02 -55 to + 150 Units V c A W Maximum Power Dissipation Maximum Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range f f W/°C °C Thermal Resistance Parameter RθJC RθJA Junction-to-Lead Junction-to-Ambient Typ. ––– ––– Max. 20 50 Units f Notes  through … are on page 9 www.irf.com 1 7/29/03 IRF7493 Static @ TJ = 25°C (unless otherwise specified) Parameter BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) IDSS IGSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units 80 ––– ––– 2.0 ––– ––– ––– ––– ––– 0.074 11.5 ––– ––– ––– ––– ––– ––– ––– 15 4.0 20 250 200 -200 nA V Conditions VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 5.6A e V µA VDS = VGS, ID = 250µA VDS = 80V, VGS = 0V VDS = 64V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V Dynamic @ TJ = 25°C (unless otherwise specified) gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Crss eff. Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance 13 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 35 5.7 12 8.3 7.5 30 12 1510 320 130 1130 210 320 ––– 53 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– pF ns S VDS = 15V, ID = 5.6A ID = 5.6A VDS = 40V VGS = 10V VDD = 40V, ID = 5.6A RG = 6.2Ω VGS = 10V VGS = 0V VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 64V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 64V e g Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current Ù d Typ. ––– ––– Max. 180 5.6 Units mJ A Diode Characteristics Parameter IS ISM VSD trr Qrr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– 37 52 9.3 A 74 1.3 56 78 V ns nC Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 5.6A, VGS = 0V TJ = 25°C, IF = 5.6A, VDD = 15V di/dt = 100A/µs Ù e e 2 www.irf.com IRF7493 100 TOP 15V 10V 8.0V 5.5V 5.0V 4.5V 4.0V BOTTOM 3.5V VGS ID, Drain-to-Source Current (A) 100 TOP ID, Drain-to-Source Current (A) 10 10 15V 10V 8.0V 5.5V 5.0V 4.5V 4.0V BOTTOM 3.5V VGS 1 3.5V 3.5V 0.1 1 0.01 0.1 1 20µs PULSE WIDTH Tj = 25°C 0.1 10 100 0.1 1 20µs PULSE WIDTH Tj = 150°C 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100.00 2.0 T J = 150°C 10.00 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (Α) ID = 9.3A VGS = 10V 1.5 T J = 25°C 1.00 1.0 0.10 3.0 4.0 VDS = 25V 20µs PULSE WIDTH 5.0 6.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 VGS, Gate-to-Source Voltage (V) T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com 3 IRF7493 100000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds C rss 10000 = C gd C oss = C ds + Cgd 20 VGS, Gate-to-Source Voltage (V) SHORTED ID= 5.6A 16 VDS= 64V VDS= 40V VDS= 16V C, Capacitance (pF) 12 Ciss 1000 Coss Crss 100 8 4 10 1 10 100 0 0 10 20 30 40 50 60 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 100.0 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) T J = 150°C 10.0 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 10 100µsec 1.0 T J = 25°C VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 1.2 VSD, Source-toDrain Voltage (V) 1 Tc = 25°C Tj = 150°C Single Pulse 0 1 10 1msec 10msec 0.1 100 1000 VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRF7493 10 VDS 8 ID , Drain Current (A) RD VGS RG D.U.T. + 6 -VDD 10V 4 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 2 Fig 10a. Switching Time Test Circuit VDS 0 25 50 75 100 125 150 T C , Case Temperature (°C) 90% Fig 9. Maximum Drain Current Vs. Ambient Temperature 10% VGS td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms 100 D = 0.50 Thermal Response ( Z thJC ) 10 0.20 0.10 0.05 1 0.02 0.01 0.1 SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 IRF7493 RDS (on) , Drain-to-Source On Resistance ( Ω) RDS(on) , Drain-to -Source On Resistance ( Ω) 0.013 0.030 0.012 VGS = 10V 0.020 ID = 5.6A 0.011 0 20 40 60 80 ID , Drain Current (A) 0.010 4.0 8.0 12.0 16.0 VGS, Gate -to -Source Voltage (V) Fig 12. On-Resistance Vs. Drain Current Current Regulator Same Type as D.U.T. Fig 13. On-Resistance Vs. Gate Voltage 50KΩ 12V .2µF .3µF VGS QGS D.U.T. + V - DS QG QGD VG 500 VGS 3mA EAS, Single Pulse Avalanche Energy (mJ) Charge IG ID TOP 400 BOTTOM ID 2.5A 4.5A 5.6A Current Sampling Resistors Fig 14a&b. Basic Gate Charge Test Circuit and Waveform 300 200 15V 100 V(BR)DSS tp VDS L DRIVER RG 20V D.U.T IAS + V - DD 0 A 25 50 75 100 125 150 I AS tp 0.01Ω Starting T J, Junction Temperature (°C) Fig 15a&b. Unclamped Inductive Test circuit and Waveforms Fig 15c. Maximum Avalanche Energy Vs. Drain Current 6 www.irf.com IRF7493 D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Vgs Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 17. Gate Charge Waveform www.irf.com 7 IRF7493 SO-8 Package Details D A 5 B DIM A b INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMET ERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 A1 .0040 6 E 8 7 6 5 H 0.25 [.010] A c D E e e1 H 1 2 3 4 .050 BAS IC .025 BAS IC .2284 .0099 .016 0° .2440 .0196 .050 8° 1.27 BAS IC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8° 6X e K L y e1 A C 0.10 [.004] y K x 45° 8X b 0.25 [.010] A1 CAB 8X L 7 8X c NOT ES : 1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994. 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ]. 4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010]. 7 DIMENS ION IS THE LENGT H OF LEAD FOR S OLDERING T O A S UBS T RAT E. 3X 1.27 [.050] 6.46 [.255] FOOT PRINT 8X 0.72 [.028] 8X 1.78 [.070] SO-8 Part Marking EXAMPLE: T HIS IS AN IRF7101 (MOS FET ) DAT E CODE (YWW) Y = LAS T DIGIT OF T HE YEAR WW = WEEK LOT CODE PART NUMBER INT ERNAT IONAL RECT IFIER LOGO YWW XXXX F7101 8 www.irf.com IRF7493 SO-8 Tape and Reel TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Notes:  Repetitive rating; pulse width limited by max. junction temperature. „ When mounted on 1 inch square copper board … Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS ‚ Starting TJ = 25°C, L = 12mH RG = 25Ω, IAS = 5.6A. ƒ Pulse width ≤ 300µs; duty cycle ≤ 2%. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.7/03 www.irf.com 9
IRF7493 价格&库存

很抱歉,暂时无法提供与“IRF7493”相匹配的价格&库存,您可以联系我们找货

免费人工找货
IRF7493TRPBF
    •  国内价格
    • 1+5.876
    • 10+5.424
    • 30+5.3336

    库存:0