PD - 97171
IRF7836PbF
HEXFET® Power MOSFET
Applications l Synchronous MOSFET for Notebook Processor Power l Synchronous Rectifier MOSFET for isolated DC-DC Converters in Networking Systems Benefits l Very Low RDS(on) at 4.5V VGS l Low Gate Charge l Fully Characterized Avalanche Voltage and Current l 100% Tested for RG l Lead-Free
VDSS
30V
RDS(on) max
Qg
5.7m:@VGS = 10V 18nC
A A D D D D
S S S G
1 2 3 4
8 7
6 5
Top View
SO-8
Absolute Maximum Ratings
Parameter
VDS VGS ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C PD @TA = 70°C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current
Max.
30 ± 20 17 13 130 2.5 1.6 0.02 -55 to + 150
Units
V
f Power Dissipation f
Power Dissipation
c
A W W/°C °C
Linear Derating Factor Operating Junction and Storage Temperature Range
Thermal Resistance
RθJL RθJA
g Junction-to-Ambient fg
Junction-to-Drain Lead
Parameter
Typ.
––– –––
Max.
20 50
Units
°C/W
Notes through
are on page 9
www.irf.com
1
01/05/06
IRF7836PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th) IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss Rg td(on) tr td(off) tf Ciss Coss Crss Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Parameter Single Pulse Avalanche Energy Avalanche Current
Min. Typ. Max. Units
30 ––– ––– ––– 1.35 ––– ––– ––– ––– ––– 70 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.024 4.5 5.7 1.8 -6.2 ––– ––– ––– ––– ––– 18 4.1 1.5 5.8 6.6 7.3 11 1.0 8.9 11 12 4.2 2400 500 230 ––– ––– 5.7 7.1 2.35 ––– 1.0 150 100 -100 ––– 27 ––– ––– ––– ––– ––– ––– 1.7 ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– pF ns nC Ω nC VDS = 15V VGS = 4.5V ID = 13A S nA V mV/°C µA V mΩ
Conditions
VGS = 0V, ID = 250µA VGS = 10V, ID = 17A VGS = 4.5V, ID = 13A
V/°C Reference to 25°C, ID = 1mA
VDS = VGS, ID = 50µA VDS = 24V, VGS = 0V
e e
VDS = 24V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 15V, ID = 13A
See Fig. 17 & 18 VDS = 16V, VGS = 0V VDD = 15V, VGS = 4.5V ID = 13A Clamped Inductive Load See Fig. 15 VGS = 0V VDS = 15V ƒ = 1.0MHz Max. 130 13 Units mJ A
Avalanche Characteristics
EAS IAR
d
Diode Characteristics
Parameter
IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min. Typ. Max. Units
––– ––– ––– ––– ––– ––– ––– ––– 15 17 3.1 130 1.0 23 26 A A V ns nC
Conditions
MOSFET symbol showing the integral reverse
G S D
Ã
p-n junction diode. TJ = 25°C, IS = 13A, VGS = 0V
TJ = 25°C, IF = 13A, VDD = 15V See Fig. 16 di/dt = 500A/µs
e
eÃ
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.irf.com
IRF7836PbF
1000
TOP VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V
1000
TOP VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
100
100
BOTTOM
10
BOTTOM
10 2.3V 1
1
0.1 2.3V 0.01 0.1 1
≤60µs PULSE WIDTH
Tj = 25°C 10 0.1 100 1000 0.1 1
≤60µs PULSE WIDTH
Tj = 150°C 10
100
1000
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
2.0
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID, Drain-to-Source Current (A)
ID = 17A VGS = 10V
100
1.5
10 T J = 150°C 1
T J = 25°C
1.0
VDS = 15V ≤60µs PULSE WIDTH 0.1 1 2 3 4 5
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
www.irf.com
3
IRF7836PbF
100000
VGS, Gate-to-Source Voltage (V)
VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = C gd Coss = Cds + Cgd
5.0 ID= 13A 4.0 VDS= 24V VDS= 15V VDS= 6.0V
C, Capacitance (pF)
10000
3.0
Ciss 1000
2.0
Coss Crss
1.0
100 1 10 VDS, Drain-to-Source Voltage (V) 100
0.0 0 2 4 6 8 10 12 14 16 18 20 22 QG, Total Gate Charge (nC)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
1000
1000
OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec
100 T J = 150°C 10 T J = 25°C
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
10 1msec 1 10msec
1 VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V)
0.1
T A = 25°C Tj = 150°C Single Pulse 0 1 10 100
0.01 VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRF7836PbF
18
VGS(th) , Gate Threshold Voltage (V)
2.5
16 14
ID, Drain Current (A)
2.0
12 10 8 6 4 2 0 25 50 75 100 125 150 T A , Ambient Temperature (°C)
1.5
ID = 50µA
1.0
0.5 -75 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C )
Fig 9. Maximum Drain Current vs. Case Temperature
Fig 10. Threshold Voltage vs. Temperature
100
10
Thermal Response ( Z thJA )
1
D = 0.50 0.20 0.10 0.05 0.02 0.01
τJ
R1 R1 τJ τ1 τ2
R2 R2
R3 R3 τ3
Ri (°C/W)
τA τA
τi (sec)
0.00553 1.1417 46.1
5.745666 27.28631 16.97549
0.1
τ1
τ2
τ3
Ci= τi/ Ri Ci= τi/ Ri
0.01
0.001
SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Ta
0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 1000
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF7836PbF
RDS(on), Drain-to -Source On Resistance (m Ω)
16 14 12 10 8 6 4 2 0 0 2 4 6 8 10 12 14 16 18 T J = 25°C T J = 125°C
500
EAS , Single Pulse Avalanche Energy (mJ)
ID = 17A
400
ID TOP 1.0A 1.3A BOTTOM 13A
300
200
100
0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Fig 12. On-Resistance vs. Gate Voltage
Fig 13. Maximum Avalanche Energy vs. Drain Current
LD
15V
VDS
VDS
L
DRIVER
VDD D.U.T
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
VGS
A
0.01Ω
Pulse Width < 1µs Duty Factor < 0.1%
Fig 14a. Unclamped Inductive Test Circuit
V(BR)DSS tp
Fig 15a. Switching Time Test Circuit
90%
VDS
10%
VGS
I AS
td(on)
tf
td(off)
tr
Fig 14b. Unclamped Inductive Waveforms
Fig 15b. Switching Time Waveforms
6
www.irf.com
IRF7836PbF
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
• • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Current Regulator Same Type as D.U.T.
Id Vds Vgs
50KΩ 12V .2µF .3µF
D.U.T. VGS
3mA
+ V - DS
Vgs(th)
IG
ID
Qgs1 Qgs2
Qgd
Qgodr
Current Sampling Resistors
Fig 17. Gate Charge Test Circuit
Fig 18. Gate Charge Waveform
www.irf.com
7
IRF7836PbF
SO-8 Package Outline (Dimensions are shown in millimeters (inches)
9 6 ' & % $ 7
9DH 6 6 i p 9 @ r r C F G DI8C@T HDI H6Y $"! %'' # (' ! " &$ (' (%' '( #(& $&# $ÃÃ76TD8 !$ÃÃ76TD8 !!'# !## (( (% $ % Ã' Ã HDGGDH@U@ST HDI H6Y &$ "$ !$ $ "" ( !$ $ #' # "' !&ÃÃ76TD8 %"$ÃÃ76TD8 %! $' $ !$ !& # Ã Ã'
% @
$
C !$Ãb dà 6
!
"
#
%Y
r
r
6
FÃÃ#$ 8 Ãb#dà 'YÃG & 'YÃp
'YÃi !$Ãb dÃ
6 867
IPU@T) ÃÃ9DH@ITDPIDIBÃÉÃUPG@S6I8DIBÃQ@SÃ6TH@Ã` #$H ((# !ÃÃ8PIUSPGGDIBÃ9DH@ITDPI)ÃHDGGDH@U@S "ÃÃ9DH@ITDPITÃ6S@ÃTCPXIÃDIÃHDGGDH@U@STÃbDI8C@Td #ÃÃPVUGDI@Ã8PIAPSHTÃUPÃE@9@8ÃPVUGDI@ÃHT !66 $ÃÃÃ9DH@ITDPIÃ9P@TÃIPUÃDI8GV9@ÃHPG9ÃQSPUSVTDPIT ÃÃÃÃÃHPG9ÃQSPUSVTDPITÃIPUÃUPÃ@Y8@@9Ã $Ãb%d %ÃÃÃ9DH@ITDPIÃ9P@TÃIPUÃDI8GV9@ÃHPG9ÃQSPUSVTDPIT ÃÃÃÃÃHPG9ÃQSPUSVTDPITÃIPUÃUPÃ@Y8@@9Ã!$Ãb d &ÃÃÃ9DH@ITDPIÃDTÃUC@ÃG@IBUCÃPAÃG@69ÃAPSÃTPG9@SDIBÃUP ÃÃÃÃÃ6ÃTV7TUS6U@
APPUQSDIU 'YÃ&!Ãb!'d
%#%Ãb!$$d
"YÃ !&Ãb$d
'YÃ &'Ãb&d
SO-8 Part Marking
(;$03/( 7+,6 ,6 $1 ,5) 026)(7 '$7( &2'(