PD - 97275
IRF7862PbF
HEXFET® Power MOSFET
Applications l Synchronous MOSFET for Notebook Processor Power l Synchronous Rectifier MOSFET for Isolated DC-DC Converters Benefits l Very Low RDS(on) at 4.5V VGS l Ultra-Low Gate Impedance l Fully Characterized Avalanche Voltage and Current l 20V VGS Max. Gate Rating l 100% tested for Rg l Lead-Free
VDSS
30V
3.7m:@VGS = 10V
A A D D D D
RDS(on) max
Qg
30nC
S S S G
1 2 3 4
8 7
6 5
Top View
SO-8
Absolute Maximum Ratings
Parameter
VDS VGS ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C PD @TA = 70°C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current
Max.
30 ± 20 21 17 170 2.5 1.6 0.02 -55 to + 150
Units
V
c
A W W/°C °C
Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range
Thermal Resistance
RθJL RθJA
g Junction-to-Ambient fg
Junction-to-Drain Lead
Parameter
Typ.
––– –––
Max.
20 50
Units
°C/W
Notes through
are on page 9
www.irf.com
1
3/1/07
IRF7862PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th) IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss Rg td(on) tr td(off) tf Ciss Coss Crss Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Parameter Single Pulse Avalanche Energy Avalanche Current
Min. Typ. Max. Units
30 ––– ––– ––– 1.35 ––– ––– ––– ––– ––– 87 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.023 3.0 3.7 ––– -5.4 ––– ––– ––– ––– ––– 30 7.5 3.1 9.8 9.6 12.9 18 1.0 12 16 17 6.1 4090 810 390 ––– ––– 3.7 4.5
Conditions
V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 20A VGS = 4.5V, ID = 16A
2.35 V VDS = VGS, ID = 100µA ––– mV/°C VDS = VGS, ID = 250µA 1.0 150 100 -100 ––– 45 ––– ––– ––– ––– ––– ––– 1.6 ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– nC Ω µA nA S
e e
VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 15V, ID = 16A VDS = 15V VGS = 4.5V ID = 16A See Figs. 15 & 16 VDS = 16V, VGS = 0V VDD = 15V, VGS = 4.5V
nC
ns
ID = 16A Clamped Inductive Load VGS = 0V VDS = 15V ƒ = 1.0MHz Max. 350 16 Units mJ A
pF
Avalanche Characteristics
EAS IAR
d
Diode Characteristics
Parameter
IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min. Typ. Max. Units
––– ––– ––– ––– ––– ––– ––– ––– 17 33 3.1 A 170 1.0 26 50 V ns nC
Conditions
MOSFET symbol showing the integral reverse
G D
Ã
S p-n junction diode. TJ = 25°C, IS = 16A, VGS = 0V
TJ = 25°C, IF = 16A, VDD = 15V di/dt = 430A/µs
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.irf.com
IRF7862PbF
1000 ≤60µs PULSE WIDTH Tj = 25°C 1000
TOP VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V
≤60µs PULSE WIDTH
Tj = 150°C
ID, Drain-to-Source Current (A)
TOP
ID, Drain-to-Source Current (A)
100
10
BOTTOM
100
BOTTOM
VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V
1
10
0.1
2.3V
2.3V 1
0.01 0.1 1 10 100 V DS, Drain-to-Source Voltage (V)
0.1
1
10
100
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
1.6
RDS(on) , Drain-to-Source On Resistance (Normalized)
VDS = 15V ≤60µs PULSE WIDTH
ID, Drain-to-Source Current (A)
100
1.4
ID = 21A VGS = 10V
1.2
10
T J = 150°C
T J = 25°C
1.0
1
0.8
0.1 1 2 3 4
0.6 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
www.irf.com
3
IRF7862PbF
100000
VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd
5.0 ID= 16A
VGS, Gate-to-Source Voltage (V)
4.0
VDS= 24V VDS= 15V
C, Capacitance (pF)
10000 Ciss
3.0
1000
Coss Crss
2.0
1.0
100 1 10 VDS, Drain-to-Source Voltage (V) 100
0.0 0 5 10 15 20 25 30 35 QG, Total Gate Charge (nC)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
1000
1000
OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec 1msec
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
10 10msec
T J = 150°C 10
T J = 25°C
1
T A = 25°C
VGS = 0V 1.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD, Source-to-Drain Voltage (V) 0.1 0.1
Tj = 150°C Single Pulse 1.0 10 100
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRF7862PbF
25
VGS(th) , Gate Threshold Voltage (V)
2.5 2.3 2.0 1.8 1.5 1.3 1.0
20
ID, Drain Current (A)
15
10
ID = 250µA
5
0 25 50 75 100 125 150 T A , Ambient Temperature (°C)
-75 -50 -25
0
25
50
75 100 125 150
T J , Temperature ( °C )
Fig 9. Maximum Drain Current vs. Ambient Temperature
Fig 10. Threshold Voltage vs. Temperature
100 D = 0.50
Thermal Response ( Z thJA ) °C/W
10 1 0.1 0.01
0.20 0.10 0.05 0.02 0.01
SINGLE PULSE ( THERMAL RESPONSE )
τJ
R1 R1 τJ τ1 τ2
R2 R2
R3 R3 τ3
R4 R4 τA τ4 τA
Ri (°C/W)
1.242 4.759 28.506 15.507
τi (sec)
0.000172 0.031397 1.2211 44.5
PDM t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJA + TA
0.001
τ1
τ2
τ3
τ4
Ci= τ i/ Ri Ci= τ i/ Ri
0.0001 1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF7862PbF
RDS(on), Drain-to -Source On Resistance (m Ω)
12 ID = 21A 10
1600
EAS , Single Pulse Avalanche Energy (mJ)
1400 1200 1000 800 600 400 200 0
ID TOP 1.0A 1.4A BOTTOM 16A
8
6
T J = 125°C
4 T J = 25°C 2 2 3 4 5 6 7 8 9 10 11 12
25
50
75
100
125
150
VGS, Gate -to -Source Voltage (V)
Starting T J , Junction Temperature (°C)
Fig 12. On-Resistance vs. Gate Voltage
Fig 13. Maximum Avalanche Energy vs. Drain Current
V(BR)DSS
15V
tp
DRIVER
L
0
VDS
L
DUT 1K 20K
S
VCC
RG
20V
D.U.T
IAS tp
+ - VDD
A
0.01Ω
I AS
Fig 14. Unclamped Inductive Test Circuit and Waveform
Id
Fig 15. Gate Charge Test Circuit
Vds Vgs
Vgs(th)
Qgodr
Qgd
Qgs2 Qgs1
Fig 16. Gate Charge Waveform
6
www.irf.com
IRF7862PbF
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
• • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
V DD
VDD
+ -
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices Fig 18. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
LD VDS
+
VDD D.U.T VGS
Second Pulse Width < 1µs Duty Factor < 0.1%
VGS
90%
10%
VDS
td(off) tf td(on) tr
Fig 19. Switching Time Test Circuit
Fig 20. Switching Time Waveforms
www.irf.com
7
IRF7862PbF
SO-8 Package Outline
9 6 ' & ! % " $ 7
(Dimensions are shown in millimeters (inches)
9DH 6 6 i DI8C@T HDI H6Y $"! %'' # " &$ '( (' ! (' (%' HDGGDH@U@ST HDI H6Y "$ &$ "" ( #' !$ $ !$ $
% @
$ #
C !$Ãb dÃ
6
p 9 @ r r C
#(& $ $ÃÃ76TD8 !$ÃÃ76TD8 !!'# !## (( % Ã (% $ Ã'
"' # !&ÃÃ76TD8 %"$ÃÃ76TD8 $' %! !$ # Ã $ !& Ã'
%Y r
F G
r
6
FÃÃ#$ 8 Ãb#dà 'YÃG & 'YÃp
'YÃi !$Ãb dÃ
6 867
IPU@T) ÃÃ9DH@ITDPIDIBÃÉÃUPG@S6I8DIBÃQ@SÃ6TH@Ã` #$H ((# !ÃÃ8PIUSPGGDIBÃ9DH@ITDPI)ÃHDGGDH@U@S "ÃÃ9DH@ITDPITÃ6S@ÃTCPXIÃDIÃHDGGDH@U@STÃbDI8C@Td #ÃÃPVUGDI@Ã8PIAPSHTÃUPÃE@9@8ÃPVUGDI@ÃHT !66 $ÃÃÃ9DH@ITDPIÃ9P@TÃIPUÃDI8GV9@ÃHPG9ÃQSPUSVTDPIT ÃÃÃÃÃHPG9ÃQSPUSVTDPITÃIPUÃUPÃ@Y8@@9Ã $Ãb%d %ÃÃÃ9DH@ITDPIÃ9P@TÃIPUÃDI8GV9@ÃHPG9ÃQSPUSVTDPIT ÃÃÃÃÃHPG9ÃQSPUSVTDPITÃIPUÃUPÃ@Y8@@9Ã!$Ãb d &ÃÃÃ9DH@ITDPIÃDTÃUC@ÃG@IBUCÃPAÃG@69ÃAPSÃTPG9@SDIBÃUP ÃÃÃÃÃ6ÃTV7TUS6U@
APPUQSDIU 'YÃ&!Ãb!'d
%#%Ãb!$$d
"YÃ !&Ãb$d
'YÃ &'Ãb&d
SO-8 Part Marking
8
www.irf.com
IRF7862PbF
SO-8 Tape and Reel
Dimensions are shown in millimeters (inches)
TERMINAL NUMBER 1
12.3 ( .484 ) 11.7 ( .461 )
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00 (12.992) MAX.
14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 2.7mH, RG = 25Ω, IAS = 16A. Pulse width ≤ 400µs; duty cycle ≤ 2%. When mounted on 1 inch square copper board.
Rθ is measured at TJ of approximately 90°C.
Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/07
www.irf.com
9