0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF7902PBF

IRF7902PBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRF7902PBF - HEXFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRF7902PBF 数据手册
PD - 97194A IRF7902PbF HEXFET® Power MOSFET Applications l Dual SO-8 MOSFET for POL Converters in Notebook Computers, Servers, Graphics Cards, Game Consoles and Set-Top Box Benefits l Very Low RDS(on) at 4.5V VGS l Low Gate Charge l Fully Characterized Avalanche Voltage and Current l 20V VGS Max. Gate Rating l Improved Body Diode Reverse Recovery l Lead-Free VDSS 30V Q1 22.6m:@VGS = 10V Q2 14.4m:@VGS = 10V 9 T ÃÃ9! T ÃÃ9! T ÃÃ9! RDS(on) max ID 6.4A 9.7A B T! T! B! SO-8 Absolute Maximum Ratings Parameter VDS VGS I D @ TA = 25°C I D @ TA = 70°C I DM PD @TA = 25°C PD @TA = 70°C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Q1 Max. 30 ± 20 6.4 5.1 51 1.4 0.9 0.011 Q2 Max. Units V c Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range 9.7 7.8 78 2.0 1.3 0.016 -55 to + 150 A W W/°C °C Thermal Resistance RθJL RθJA Parameter Junction-to-Drain Lead g Junction-to-Ambient fg Q1 Max. 20 90 Q2 Max. 20 62.5 Units °C/W www.irf.com 1 07/10/06 IRF7902PbF Static @ TJ = 25°C (unless otherwise specified) BVDSS ∆ΒVDSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Q1&Q2 Q1 Q2 Q1 Q2 VGS(th) ∆VGS(th)/∆TJ IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Q1&Q2 Q1 Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Min. 30 ––– ––– ––– ––– ––– ––– 1.35 ––– ––– ––– ––– ––– ––– 13 19 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.023 0.025 18.1 23.8 11.5 14.9 1.8 -4.7 -5.9 ––– ––– ––– ––– ––– ––– 4.6 6.5 0.9 1.4 0.5 0.8 1.8 2.3 1.4 2.0 2.3 3.1 3.0 4.4 3.1 3.1 7.4 6.1 8.2 8.6 8.4 8.2 3.4 3.3 580 900 130 190 74 86 Max. ––– ––– ––– 22.6 29.7 14.4 18.7 2.25 ––– ––– 1.0 150 100 -100 ––– ––– 6.9 9.8 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 4.9 4.9 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– ––– ––– ––– 7.8 12 1.5 3.1 Max. 1.7 2.5 51 78 1.0 1.0 12 18 2.3 4.7 Conditions Units VGS = 0V, ID = 250µA V V/°C Reference to 25°C, ID = 1mA VGS = 10V, ID = 6.4A VGS = 4.5V, ID = 5.1A VGS = 10V, ID = 9.7A VGS = 4.5V, ID = 7.8A VDS = VGS, ID = 25µA RDS(on) Static Drain-to-Source On-Resistance mΩ e e e e V mV/°C µA nA S VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 15V, ID = 5.1A VDS = 15V, ID = 7.8A nC Q1 VDS = 15V VGS = 4.5V, ID = 5.1A Q2 VDS = 15V VGS = 4.5V, ID = 7.8A nC VDS = 16V, VGS = 0V Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Ω Q1 VDD = 15V, VGS = 4.5V ID = 5.1A ns Q2 VDD = 15V, VGS = 4.5V ID = 7.8A Clamped Inductive Load VGS = 0V VDS = 15V ƒ = 1.0MHz pF Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current ™ d Q1 Max. 3.4 5.1 Q2 Max. 7.3 7.8 Units mJ A Diode Characteristics IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Units Conditions A MOSFET symbol showing the A integral reverse p-n junction diode. TJ = 25°C, IS = 5.1A, VGS = 0V V TJ = 25°C, IS = 7.8A, VGS = 0V ns Q1 TJ = 25°C, IF = 5.1A, VDD = 15V, di/dt = 100A/µs nC Q2 TJ = 25°C, IF = 7.8A, VDD = 15V, di/dt = 100A/µs Ù Reverse Recovery Time Reverse Recovery Charge e e e e 2 www.irf.com Typical Characteristics Q1 - Control FET 100 TOP VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V IRF7902PbF Q2 - Synchronous FET 100 TOP VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V ID, Drain-to-Source Current (A) 10 BOTTOM ID, Drain-to-Source Current (A) 10 BOTTOM 1 1 2.5V 0.1 2.5V ≤60µs PULSE WIDTH Tj = 25°C 0.01 0.1 1 10 100 1000 V DS, Drain-to-Source Voltage (V) ≤60µs PULSE WIDTH 0.1 0.1 1 Tj = 25°C 10 100 1000 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100 TOP VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V Fig 2. Typical Output Characteristics 100 TOP VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V ID, Drain-to-Source Current (A) 10 BOTTOM ID, Drain-to-Source Current (A) BOTTOM 10 1 2.5V 2.5V ≤60µs PULSE WIDTH Tj = 150°C 0.1 0.1 1 10 100 1000 V DS, Drain-to-Source Voltage (V) ≤60µs PULSE WIDTH Tj = 150°C 1 0.1 1 10 100 1000 V DS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics 100 Fig 4. Typical Output Characteristics 100 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 10 TJ = 150°C 10 T J = 150°C 1 T J = 25°C VDS = 15V ≤60µs PULSE WIDTH 1 T J = 25°C VDS = 15V ≤60µs PULSE WIDTH 0.1 1 2 3 4 5 6 0.1 1 2 3 4 5 6 VGS, Gate-to-Source Voltage (V) VGS, Gate-to-Source Voltage (V) Fig 5. Typical Transfer Characteristics Fig 6. Typical Transfer Characteristics www.irf.com 3 IRF7902PbF Q1 - Control FET 10000 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = C gd Coss = C ds + Cgd Typical Characteristics Q2 - Synchronous FET 10000 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = C gd Coss = C ds + Cgd C, Capacitance (pF) 1000 Ciss Coss 100 Crss C, Capacitance (pF) 1000 Ciss Coss 100 Crss 10 1 10 VDS, Drain-to-Source Voltage (V) 100 10 1 10 VDS, Drain-to-Source Voltage (V) 100 Fig 7. Typical Capacitance vs. Drain-to-Source Voltage Fig 8. Typical Capacitance vs. Drain-to-Source Voltage 6.0 ID= 5.1A VGS, Gate-to-Source Voltage (V) VGS, Gate-to-Source Voltage (V) 6.0 ID= 7.8A 5.0 4.0 3.0 2.0 1.0 0.0 VDS= 24V VDS= 15V VDS= 6.0V 5.0 4.0 3.0 2.0 1.0 0.0 0 1 2 3 4 5 6 QG, Total Gate Charge (nC) VDS= 24V VDS= 15V VDS= 6.0V 0 1 2 3 4 5 6 7 8 QG, Total Gate Charge (nC) Fig 9. Typical Gate Charge vs. Gate-to-Source Voltage 1000 ID, Drain-to-Source Current (A) Fig 10. Typical Gate Charge vs. Gate-to-Source Voltage 1000 ID, Drain-to-Source Current (A) 100 10 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 10 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec 100µsec 0.1 0.01 T A = 25°C Tj = 150°C Single Pulse 0 1 1msec 10msec 100msec 0.1 0.01 T A = 25°C Tj = 150°C Single Pulse 0 1 1msec 10msec 100msec 0.001 10 100 VDS, Drain-to-Source Voltage (V) 0.001 10 100 VDS, Drain-to-Source Voltage (V) Fig 11. Maximum Safe Operating Area Fig 12. Maximum Safe Operating Area 4 www.irf.com Typical Characteristics Q1 - Control FET RDS(on) , Drain-to-Source On Resistance (Normalized) RDS(on) , Drain-to-Source On Resistance (Normalized) IRF7902PbF Q2 - Synchronous FET 2.0 ID = 9.7A VGS = 10V 2.0 ID = 6.4A VGS = 10V 1.5 1.5 1.0 1.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig 13. Normalized On-Resistance vs. Temperature 100 Fig 14. Normalized On-Resistance vs. Temperature 100 ISD, Reverse Drain Current (A) ISD, Reverse Drain Current (A) T J = 150°C 10 T J = 25°C T J = 150°C 10 T J = 25°C 1 1 VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V) VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V) Fig 15. Typical Source-Drain Diode Forward Voltage RDS(on), Drain-to -Source On Resistance (m Ω) 60 ID = 6.4A 50 Fig 16. Typical Source-Drain Diode Forward Voltage RDS(on), Drain-to -Source On Resistance (m Ω) 40 ID = 9.7A 30 40 20 T J = 125°C 30 T J = 125°C 10 20 T J = 25°C 10 2 4 6 8 10 12 14 16 T J = 25°C 0 2 4 6 8 10 12 14 16 VGS, Gate -to -Source Voltage (V) VGS, Gate -to -Source Voltage (V) Fig 17. Typical On-Resistance vs.Gate Voltage Fig 18. Typical On-Resistance vs.Gate Voltage www.irf.com 5 IRF7902PbF Q1 - Control FET 7 6 Typical Characteristics Q2 - Synchronous FET 10 8 ID, Drain Current (A) 5 4 3 2 1 0 25 50 75 100 125 150 T A , Ambient Temperature (°C) ID, Drain Current (A) 6 4 2 0 25 50 75 100 125 150 T A , Ambient Temperature (°C) Fig 19. Maximum Drain Current vs. Ambient Temperature 2.5 VGS(th) , Gate Threshold Voltage (V) Fig 20. Maximum Drain Current vs. Ambient Temperature 2.5 VGS(th) , Gate Threshold Voltage (V) 2.0 2.0 ID = 250µA 1.5 ID = 250µA 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) 1.0 -75 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 21. Threshold Voltage vs. Temperature EAS , Single Pulse Avalanche Energy (mJ) Fig 22. Threshold Voltage vs. Temperature EAS , Single Pulse Avalanche Energy (mJ) 30 25 20 15 10 5 0 ID 2.4A 2.8A BOTTOM 7.8A TOP 14 12 10 8 6 4 2 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) ID TOP 2.0A 2.4A BOTTOM 6.4A 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 23. Maximum Avalanche Energy vs. Drain Current Fig 24. Maximum Avalanche Energy vs. Drain Current 6 www.irf.com IRF7902PbF 1000 Thermal Response ( Z thJA ) 100 D = 0.50 10 0.20 0.10 0.05 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τA τ τ4 1 τ1 τ2 τ3 τ4 0.1 Ci= τi/Ri Ci= τ i/ Ri Ri (°C/W) τi (sec) 3.031518 0.000064 7.306226 0.005879 51.39689 0.44864 28.2607 12.37 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q1) 100 D = 0.50 Thermal Response ( Z thJA ) 10 0.20 0.10 0.05 R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 R4 R4 τA τ1 τ2 τ3 τ4 τ4 τ 1 0.02 0.01 τJ 0.1 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi/Ri Ci= τ i/ Ri Ri (°C/W) τi (sec) 2.445866 0.000118 9.382382 0.020778 33.63681 0.70843 17.05217 24.5 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 26. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q2) Fig 27. Layout Diagram www.irf.com 7 IRF7902PbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 28. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01Ω I AS Fig 29a. Unclamped Inductive Test Circuit LD VDS Fig 29b. Unclamped Inductive Waveforms VDS 90% + VDD D.U.T 10% VGS Pulse Width < 1µs Duty Factor < 0.1% VGS td(on) tr td(off) tf Fig 30a. Switching Time Test Circuit Current Regulator Same Type as D.U.T. Fig 30b. Switching Time Waveforms Id Vds Vgs 50KΩ 12V .2µF .3µF VGS -3mA IG ID Current Sampling Resistors Fig 31a. Gate Charge Test Circuit 8 + D.U.T. - VDS Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 31b. Gate Charge Waveform www.irf.com IRF7902PbF SO-8 Package Outline Dimensions are shown in milimeters (inches) 9DH 6 6 i p 9 @ r r C F G ’ DI8C@T HDI H6Y $"! %'' # ('  " ! &$ ('  '(  (%'  #(&  $&# $ÃÃ76TD8 !$ÃÃ76TD8 !!'# !## ((  (%  % $ à Ã'ƒ HDGGDH@U@ST HDI H6Y "$ &$   !$ "" $  ( !$ #' $ "' # !&ÃÃ76TD8 %"$ÃÃ76TD8 $' %! !$ $ # !& Ã'ƒ à 9 6 ' & ! % " $ $ # 7 % @ C !$Ãb dà 6 %Y r r 6 FÑÃ#$ƒ 8  Ãb#dà ’ 'YÃG & 'YÃp 'YÃi !$Ãb dà 6 867 APPUQSDIU IPU@T) ÃÃ9DH@ITDPIDIBÃÉÃUPG@S6I8DIBÃQ@SÃ6TH@Ã` #$H ((# !ÃÃ8PIUSPGGDIBÃ9DH@ITDPI)ÃHDGGDH@U@S "ÃÃ9DH@ITDPITÃ6S@ÃTCPXIÃDIÃHDGGDH@U@STÃbDI8C@Td #ÃÃPVUGDI@Ã8PIAPSHTÃUPÃE@9@8ÃPVUGDI@ÃHT !66 $ÃÃÃ9DH@ITDPIÃ9P@TÃIPUÃDI8GV9@ÃHPG9ÃQSPUSVTDPIT ÃÃÃÃÃHPG9ÃQSPUSVTDPITÃIPUÃUPÃ@Y8@@9à $Ãb%d %ÃÃÃ9DH@ITDPIÃ9P@TÃIPUÃDI8GV9@ÃHPG9ÃQSPUSVTDPIT ÃÃÃÃÃHPG9ÃQSPUSVTDPITÃIPUÃUPÃ@Y8@@9Ã!$Ãb d &ÃÃÃ9DH@ITDPIÃDTÃUC@ÃG@IBUCÃPAÃG@69ÃAPSÃTPG9@SDIBÃUP ÃÃÃÃÃ6ÃTV7TUS6U@ 'YÃ&!Ãb!'d %#%Ãb!$$d "Yà !&Ãb$d 'Yà &'Ãb&d SO-8 Part Marking Information @Y6HQG@)ÃUCDTÃDTÃ6IÃDSA&  ÃHPTA@U 96U@Ã8P9@Ã`XX QÃ2Ã9DTBI6U@TÃG@69ÃÃAS@@ QSP9V8UÃPQUDPI6G `Ã2ÃG6TUÃ9DBDUÃPAÃUC@Ã`@6S XXÃ2ÃX@@F 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ GPUÃ8P9@ Q6SUÃIVH7@S DIU@SI6UDPI6G S@8UDAD@S GPBP ;;;; ) www.irf.com 9 IRF7902PbF SO-8 Tape and Reel Dimensions are shown in milimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Notes:  Repetitive rating; pulse width limited by max. junction temperature. ‚ Starting TJ = 25°C, Q1: L = 0.26mH, RG = 25Ω, IAS = 5.1A; Q2: L = 0.24mH, RG = 25Ω, IAS = 7.8A. ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%. „ When mounted on 1 inch square copper board. … Rθ is measured at TJ approximately 90°C. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/2006 10 www.irf.com
IRF7902PBF 价格&库存

很抱歉,暂时无法提供与“IRF7902PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货