PD - 97194A
IRF7902PbF
HEXFET® Power MOSFET
Applications l Dual SO-8 MOSFET for POL Converters in Notebook Computers, Servers, Graphics Cards, Game Consoles and Set-Top Box Benefits l Very Low RDS(on) at 4.5V VGS l Low Gate Charge l Fully Characterized Avalanche Voltage and Current l 20V VGS Max. Gate Rating l Improved Body Diode Reverse Recovery l Lead-Free
VDSS
30V
Q1 22.6m:@VGS = 10V Q2 14.4m:@VGS = 10V
9 T ÃÃ9! T ÃÃ9! T ÃÃ9!
RDS(on) max
ID
6.4A 9.7A
B T! T! B!
SO-8
Absolute Maximum Ratings
Parameter
VDS VGS I D @ TA = 25°C I D @ TA = 70°C I DM PD @TA = 25°C PD @TA = 70°C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current
Q1 Max.
30 ± 20 6.4 5.1 51 1.4 0.9 0.011
Q2 Max.
Units
V
c
Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range
9.7 7.8 78 2.0 1.3 0.016 -55 to + 150
A W W/°C °C
Thermal Resistance
RθJL RθJA Parameter Junction-to-Drain Lead
g Junction-to-Ambient fg
Q1 Max.
20 90
Q2 Max.
20 62.5
Units °C/W
www.irf.com
1
07/10/06
IRF7902PbF
Static @ TJ = 25°C (unless otherwise specified)
BVDSS ∆ΒVDSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Q1&Q2 Q1 Q2 Q1 Q2 VGS(th) ∆VGS(th)/∆TJ IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Q1&Q2 Q1 Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Min. 30 ––– ––– ––– ––– ––– ––– 1.35 ––– ––– ––– ––– ––– ––– 13 19 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.023 0.025 18.1 23.8 11.5 14.9 1.8 -4.7 -5.9 ––– ––– ––– ––– ––– ––– 4.6 6.5 0.9 1.4 0.5 0.8 1.8 2.3 1.4 2.0 2.3 3.1 3.0 4.4 3.1 3.1 7.4 6.1 8.2 8.6 8.4 8.2 3.4 3.3 580 900 130 190 74 86 Max. ––– ––– ––– 22.6 29.7 14.4 18.7 2.25 ––– ––– 1.0 150 100 -100 ––– ––– 6.9 9.8 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 4.9 4.9 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– ––– ––– ––– 7.8 12 1.5 3.1 Max. 1.7 2.5 51 78 1.0 1.0 12 18 2.3 4.7 Conditions Units VGS = 0V, ID = 250µA V V/°C Reference to 25°C, ID = 1mA VGS = 10V, ID = 6.4A VGS = 4.5V, ID = 5.1A VGS = 10V, ID = 9.7A VGS = 4.5V, ID = 7.8A VDS = VGS, ID = 25µA
RDS(on)
Static Drain-to-Source On-Resistance
mΩ
e e e e
V mV/°C µA nA S
VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 15V, ID = 5.1A VDS = 15V, ID = 7.8A
nC
Q1 VDS = 15V VGS = 4.5V, ID = 5.1A Q2 VDS = 15V VGS = 4.5V, ID = 7.8A
nC
VDS = 16V, VGS = 0V
Gate Resistance
Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
Ω
Q1 VDD = 15V, VGS = 4.5V ID = 5.1A ns Q2 VDD = 15V, VGS = 4.5V ID = 7.8A Clamped Inductive Load VGS = 0V VDS = 15V ƒ = 1.0MHz
pF
Avalanche Characteristics
EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current
d
Q1 Max. 3.4 5.1
Q2 Max. 7.3 7.8
Units mJ A
Diode Characteristics
IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Units Conditions A MOSFET symbol showing the A integral reverse p-n junction diode. TJ = 25°C, IS = 5.1A, VGS = 0V V TJ = 25°C, IS = 7.8A, VGS = 0V ns Q1 TJ = 25°C, IF = 5.1A, VDD = 15V, di/dt = 100A/µs nC Q2 TJ = 25°C, IF = 7.8A, VDD = 15V, di/dt = 100A/µs
Ã
Reverse Recovery Time Reverse Recovery Charge
e e e e
2
www.irf.com
Typical Characteristics Q1 - Control FET
100
TOP VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V
IRF7902PbF
Q2 - Synchronous FET
100
TOP VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V
ID, Drain-to-Source Current (A)
10
BOTTOM
ID, Drain-to-Source Current (A)
10
BOTTOM
1
1 2.5V
0.1
2.5V
≤60µs PULSE WIDTH
Tj = 25°C 0.01 0.1 1 10 100 1000 V DS, Drain-to-Source Voltage (V)
≤60µs PULSE WIDTH
0.1 0.1 1 Tj = 25°C 10 100 1000
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
TOP VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V
Fig 2. Typical Output Characteristics
100
TOP VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V
ID, Drain-to-Source Current (A)
10
BOTTOM
ID, Drain-to-Source Current (A)
BOTTOM
10
1
2.5V
2.5V
≤60µs PULSE WIDTH
Tj = 150°C 0.1 0.1 1 10 100 1000 V DS, Drain-to-Source Voltage (V)
≤60µs PULSE WIDTH
Tj = 150°C 1 0.1 1 10 100 1000 V DS, Drain-to-Source Voltage (V)
Fig 3. Typical Output Characteristics
100
Fig 4. Typical Output Characteristics
100
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
10 TJ = 150°C
10
T J = 150°C
1
T J = 25°C VDS = 15V ≤60µs PULSE WIDTH
1
T J = 25°C
VDS = 15V ≤60µs PULSE WIDTH 0.1 1 2 3 4 5 6
0.1 1 2 3 4 5 6
VGS, Gate-to-Source Voltage (V)
VGS, Gate-to-Source Voltage (V)
Fig 5. Typical Transfer Characteristics
Fig 6. Typical Transfer Characteristics
www.irf.com
3
IRF7902PbF
Q1 - Control FET
10000
VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = C gd Coss = C ds + Cgd
Typical Characteristics Q2 - Synchronous FET
10000
VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = C gd Coss = C ds + Cgd
C, Capacitance (pF)
1000 Ciss Coss 100 Crss
C, Capacitance (pF)
1000
Ciss Coss
100
Crss
10 1 10 VDS, Drain-to-Source Voltage (V) 100
10 1 10 VDS, Drain-to-Source Voltage (V) 100
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage Fig 8. Typical Capacitance vs. Drain-to-Source Voltage
6.0 ID= 5.1A
VGS, Gate-to-Source Voltage (V)
VGS, Gate-to-Source Voltage (V)
6.0 ID= 7.8A 5.0 4.0 3.0 2.0 1.0 0.0 VDS= 24V VDS= 15V VDS= 6.0V
5.0 4.0 3.0 2.0 1.0 0.0 0 1 2 3 4 5 6 QG, Total Gate Charge (nC) VDS= 24V VDS= 15V VDS= 6.0V
0
1
2
3
4
5
6
7
8
QG, Total Gate Charge (nC)
Fig 9. Typical Gate Charge vs. Gate-to-Source Voltage
1000
ID, Drain-to-Source Current (A)
Fig 10. Typical Gate Charge vs. Gate-to-Source Voltage
1000
ID, Drain-to-Source Current (A)
100 10 1
OPERATION IN THIS AREA LIMITED BY R DS(on)
100 10 1
OPERATION IN THIS AREA LIMITED BY R DS(on)
100µsec
100µsec
0.1 0.01 T A = 25°C Tj = 150°C Single Pulse 0 1
1msec 10msec 100msec
0.1 0.01 T A = 25°C Tj = 150°C Single Pulse 0 1
1msec 10msec 100msec
0.001 10 100 VDS, Drain-to-Source Voltage (V)
0.001 10 100 VDS, Drain-to-Source Voltage (V)
Fig 11. Maximum Safe Operating Area
Fig 12. Maximum Safe Operating Area
4
www.irf.com
Typical Characteristics Q1 - Control FET
RDS(on) , Drain-to-Source On Resistance (Normalized)
RDS(on) , Drain-to-Source On Resistance (Normalized)
IRF7902PbF
Q2 - Synchronous FET
2.0 ID = 9.7A VGS = 10V
2.0 ID = 6.4A VGS = 10V
1.5
1.5
1.0
1.0
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C)
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C)
Fig 13. Normalized On-Resistance vs. Temperature
100
Fig 14. Normalized On-Resistance vs. Temperature
100
ISD, Reverse Drain Current (A)
ISD, Reverse Drain Current (A)
T J = 150°C 10 T J = 25°C
T J = 150°C 10 T J = 25°C
1
1
VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V)
VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V)
Fig 15. Typical Source-Drain Diode Forward Voltage
RDS(on), Drain-to -Source On Resistance (m Ω)
60 ID = 6.4A 50
Fig 16. Typical Source-Drain Diode Forward Voltage
RDS(on), Drain-to -Source On Resistance (m Ω)
40 ID = 9.7A 30
40
20
T J = 125°C
30
T J = 125°C
10
20 T J = 25°C 10 2 4 6 8 10 12 14 16
T J = 25°C
0 2 4 6 8 10 12 14 16
VGS, Gate -to -Source Voltage (V)
VGS, Gate -to -Source Voltage (V)
Fig 17. Typical On-Resistance vs.Gate Voltage
Fig 18. Typical On-Resistance vs.Gate Voltage
www.irf.com
5
IRF7902PbF
Q1 - Control FET
7 6
Typical Characteristics Q2 - Synchronous FET
10
8
ID, Drain Current (A)
5 4 3 2 1 0 25 50 75 100 125 150 T A , Ambient Temperature (°C)
ID, Drain Current (A)
6
4
2
0 25 50 75 100 125 150 T A , Ambient Temperature (°C)
Fig 19. Maximum Drain Current vs. Ambient Temperature
2.5
VGS(th) , Gate Threshold Voltage (V)
Fig 20. Maximum Drain Current vs. Ambient Temperature
2.5
VGS(th) , Gate Threshold Voltage (V)
2.0
2.0
ID = 250µA 1.5
ID = 250µA 1.5
1.0 -75 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C )
1.0 -75 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C )
Fig 21. Threshold Voltage vs. Temperature
EAS , Single Pulse Avalanche Energy (mJ)
Fig 22. Threshold Voltage vs. Temperature
EAS , Single Pulse Avalanche Energy (mJ)
30 25 20 15 10 5 0 ID 2.4A 2.8A BOTTOM 7.8A TOP
14 12 10 8 6 4 2 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) ID TOP 2.0A 2.4A BOTTOM 6.4A
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 23. Maximum Avalanche Energy vs. Drain Current
Fig 24. Maximum Avalanche Energy vs. Drain Current
6
www.irf.com
IRF7902PbF
1000
Thermal Response ( Z thJA )
100 D = 0.50 10 0.20 0.10 0.05 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE )
τJ τJ τ1
R1 R1 τ2
R2 R2
R3 R3 τ3
R4 R4 τA τ τ4
1
τ1
τ2
τ3
τ4
0.1
Ci= τi/Ri Ci= τ i/ Ri
Ri (°C/W) τi (sec) 3.031518 0.000064 7.306226 0.005879 51.39689 0.44864 28.2607 12.37
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 1000
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q1)
100 D = 0.50
Thermal Response ( Z thJA )
10
0.20 0.10 0.05
R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 R4 R4 τA τ1 τ2 τ3 τ4 τ4 τ
1
0.02 0.01
τJ
0.1
SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi/Ri Ci= τ i/ Ri
Ri (°C/W) τi (sec) 2.445866 0.000118 9.382382 0.020778 33.63681 0.70843 17.05217 24.5
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 1000
t1 , Rectangular Pulse Duration (sec)
Fig 26. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q2)
Fig 27. Layout Diagram
www.irf.com
7
IRF7902PbF
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
+
RG
• • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage
Body Diode
Forward Drop
Inductor Curent Inductor Current
Ripple ≤ 5% ISD
* VGS = 5V for Logic Level Devices Fig 28. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
15V
tp
DRIVER
VDS
L
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
A
0.01Ω
I AS
Fig 29a. Unclamped Inductive Test Circuit
LD VDS
Fig 29b. Unclamped Inductive Waveforms
VDS
90%
+
VDD D.U.T
10%
VGS Pulse Width < 1µs Duty Factor < 0.1%
VGS
td(on) tr td(off) tf
Fig 30a. Switching Time Test Circuit
Current Regulator Same Type as D.U.T.
Fig 30b. Switching Time Waveforms
Id Vds Vgs
50KΩ 12V .2µF .3µF
VGS
-3mA
IG
ID
Current Sampling Resistors
Fig 31a. Gate Charge Test Circuit
8
+
D.U.T.
-
VDS
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 31b. Gate Charge Waveform
www.irf.com
IRF7902PbF
SO-8 Package Outline
Dimensions are shown in milimeters (inches)
9DH 6 6 i p 9 @ r r C F G DI8C@T HDI H6Y $"! %'' # (' " ! &$ (' '( (%' #(& $ $ÃÃ76TD8 !$ÃÃ76TD8 !!'# !## (( (% % $ Ã Ã' HDGGDH@U@ST HDI H6Y "$ &$ !$ "" $ ( !$ #' $ "' # !&ÃÃ76TD8 %"$ÃÃ76TD8 $' %! !$ $ # !& Ã' Ã
9 6 ' & ! % " $ $ #
7
% @
C !$Ãb dÃ
6
%Y r
r
6
FÃÃ#$ 8 Ãb#dà 'YÃG & 'YÃp
'YÃi !$Ãb dÃ
6 867
APPUQSDIU
IPU@T) ÃÃ9DH@ITDPIDIBÃÉÃUPG@S6I8DIBÃQ@SÃ6TH@Ã` #$H ((# !ÃÃ8PIUSPGGDIBÃ9DH@ITDPI)ÃHDGGDH@U@S "ÃÃ9DH@ITDPITÃ6S@ÃTCPXIÃDIÃHDGGDH@U@STÃbDI8C@Td #ÃÃPVUGDI@Ã8PIAPSHTÃUPÃE@9@8ÃPVUGDI@ÃHT !66 $ÃÃÃ9DH@ITDPIÃ9P@TÃIPUÃDI8GV9@ÃHPG9ÃQSPUSVTDPIT ÃÃÃÃÃHPG9ÃQSPUSVTDPITÃIPUÃUPÃ@Y8@@9Ã $Ãb%d %ÃÃÃ9DH@ITDPIÃ9P@TÃIPUÃDI8GV9@ÃHPG9ÃQSPUSVTDPIT ÃÃÃÃÃHPG9ÃQSPUSVTDPITÃIPUÃUPÃ@Y8@@9Ã!$Ãb d &ÃÃÃ9DH@ITDPIÃDTÃUC@ÃG@IBUCÃPAÃG@69ÃAPSÃTPG9@SDIBÃUP ÃÃÃÃÃ6ÃTV7TUS6U@
'YÃ&!Ãb!'d
%#%Ãb!$$d
"YÃ !&Ãb$d
'YÃ &'Ãb&d
SO-8 Part Marking Information
@Y6HQG@)ÃUCDTÃDTÃ6IÃDSA& ÃHPTA@U 96U@Ã8P9@Ã`XX QÃ2Ã9DTBI6U@TÃG@69ÃÃAS@@ QSP9V8UÃPQUDPI6G `Ã2ÃG6TUÃ9DBDUÃPAÃUC@Ã`@6S XXÃ2ÃX@@F 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ GPUÃ8P9@ Q6SUÃIVH7@S
DIU@SI6UDPI6G S@8UDAD@S GPBP
;;;; )
www.irf.com
9
IRF7902PbF
SO-8 Tape and Reel
Dimensions are shown in milimeters (inches)
TERMINAL NUMBER 1
12.3 ( .484 ) 11.7 ( .461 )
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00 (12.992) MAX.
14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, Q1: L = 0.26mH, RG = 25Ω, IAS = 5.1A; Q2: L = 0.24mH, RG = 25Ω, IAS = 7.8A. Pulse width ≤ 400µs; duty cycle ≤ 2%.
When mounted on 1 inch square copper board.
Rθ is measured at TJ approximately 90°C.
Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/2006
10
www.irf.com