PD - 94419
IRF7910
HEXFET® Power MOSFET
Applications l High Frequency 3.3V and 5V input Pointof-Load Synchronous Buck Converters for Netcom and Computing Applications l Power Management for Netcom, Computing and Portable Applications
S1
VDSS
12V
RDS(on) max
15mΩ @VGS = 4.5V
ID
10A
1
8
D1 D1 D2 D2
Benefits l Ultra-Low Gate Impedance l Very Low RDS(on) l Fully Characterized Avalanche Voltage and Current
G1 S2 G2
2
7
3
6
4
5
Top View
SO-8
Absolute Maximum Ratings
Symbol
VDS VGS ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C PD @TA = 70°C TJ , TSTG
Parameter
Drain-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 4.5V Continuous Drain Current, VGS @ 4.5V Pulsed Drain Current Maximum Power Dissipation Maximum Power Dissipation Linear Derating Factor Junction and Storage Temperature Range
Max.
12 ± 12 10 7.9 79 2.0 1.3 16 -55 to + 150
Units
V V A W W mW/°C °C
Thermal Resistance
Symbol
RθJL RθJA
Parameter
Junction-to-Drain Lead Junction-to-Ambient
Typ.
––– –––
Max.
20 62.5
Units
°C/W
Notes through are on page 8
www.irf.com
1
4/29/02
IRF7910
Static @ TJ = 25°C (unless otherwise specified)
Symbol V(BR)DSS
∆V(BR)DSS/∆TJ
Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage
RDS(on) VGS(th) IDSS IGSS
Min. 12 ––– ––– ––– 0.6 ––– ––– ––– –––
Typ. ––– 0.01 11.5 20 ––– ––– ––– ––– –––
Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 15 VGS = 4.5V, ID = 8.0A mΩ 50 VGS = 2.8V, I D = 5.0A 2.0 V VDS = VGS, ID = 250µA 100 VDS = 9.6V, VGS = 0V µA 250 VDS = 9.6V, VGS = 0V, TJ = 125°C 200 VGS = 12V nA -200 VGS = -12V
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs Qg Qgs Qgd Qoss td(on) tr td(off) tf Ciss Coss Crss Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Output Gate Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units Conditions 18 ––– ––– S VDS = 6.0V, ID = 8.0A ––– 17 26 ID = 8.0A ––– 4.4 ––– nC VDS = 6.0V ––– 5.2 ––– VGS = 4.5V ––– 16 ––– VGS = 0V, VDS = 10V ––– 9.4 ––– VDD = 6.0V ––– 22 ––– ID = 8.0A ns ––– 16 ––– RG = 1.8Ω ––– 6.3 ––– VGS = 4.5V ––– 1730 ––– VGS = 0V ––– 1340 ––– VDS = 6.0V ––– 330 ––– pF ƒ = 1.0MHz
Avalanche Characteristics
Symbol
EAS IAR
Parameter
Single Pulse Avalanche Energy Avalanche Current
Typ.
––– –––
Max.
100 8.0
Units
mJ A
Diode Characteristics
Symbol
IS
ISM
Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Reverse Reverse Reverse Recovery Recovery Recovery Recovery Time Charge Time Charge
Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.85 0.70 50 60 51 60 1.8 A 79 1.3 ––– 75 90 77 90 V ns nC ns nC
VSD trr Qrr trr Qrr
Conditions D MOSFET symbol showing the G integral reverse S p-n junction diode. TJ = 25°C, IS = 8.0A, VGS = 0V TJ = 125°C, I S = 8.0A, VGS = 0V TJ = 25°C, IF = 8.0A, VR =12V di/dt = 100A/µs TJ = 125°C, IF = 8.0A, V R =12V di/dt = 100A/µs
2
www.irf.com
IRF7910
1000
TOP
ID, Drain-to-Source Current (A)
100
ID, Drain-to-Source Current (A)
10
10V 8.0V 5.0V 4.5V 3.5V 2.7V 2.0V BOTTOM 1.5V
VGS
1000
100
VGS 10V 8.0V 5.0V 4.5V 3.5V 2.7V 2.0V BOTTOM 1.5V
TOP
10
1
1.5V
0.1
1
1.5V 20µs PULSE WIDTH Tj = 150°C
20µs PULSE WIDTH Tj = 25°C
0.01 0.1 1 10 0.1 0.1
1
10
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
2.0
I D = 10A
ID, Drain-to-Source Current (Α)
R DS(on) , Drain-to-Source On Resistance
1.5
T J = 150°C
10
(Normalized)
1.0
TJ = 25°C
0.5
1 1.0 2.0
VDS = 10V 20µs PULSE WIDTH
3.0 4.0
V GS = 4.5V
0.0 -60 -40 -20 0 20 40 60 80 100 120 140 160
VGS , Gate-to-Source Voltage (V)
TJ, Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRF7910
10000 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = Cgd Coss = Cds + Cgd
12 ID= 8.0A
VGS , Gate-to-Source Voltage (V)
10 8 6 4 2 0
VDS= 9.6V VDS= 6.0V
C, Capacitance (pF)
1000
Ciss Coss
Crss
FOR TEST CIRCUIT SEE FIGURE 13
100 1 10 100
0
10
20
30
40
VDS, Drain-to-Source Voltage (V)
Q G Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
100.0
1000 OPERATION IN THIS AREA LIMITED BY R DS(on)
10.0
T J = 150°C
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
100µsec 10 1msec Tc = 25°C Tj = 150°C Single Pulse 0 1 10
1.0
T J = 25°C
VGS = 0V 0.1 0.0 0.5 1.0 1.5 2.0 VSD, Source-toDrain Voltage (V)
10msec
1
100
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRF7910
10.0
VDS
8.0
RD
VGS RG
D.U.T.
+
ID , Drain Current (A)
-V DD
6.0
V GS
4.0
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
Fig 10a. Switching Time Test Circuit
2.0
VDS 90%
0.0 25 50 75 100 125 150
TC, Case Temperature (°C)
Fig 9. Maximum Drain Current Vs. Ambient Temperature
10% VGS
td(on) tr t d(off) tf
Fig 10b. Switching Time Waveforms
100
D = 0.50
(Z thJA )
0.20 10 0.10
Thermal Response
0.05
0.02 1 0.01
P DM t1 t2 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = 2. Peak T t1/ t 2 +T A 10 100
J = P DM x Z thJA
0.1 0.00001
0.0001
0.001
0.01
0.1
1
t 1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF7910
RDS (on) , Drain-to-Source On Resistance ( Ω)
RDS(on) , Drain-to -Source On Resistance ( Ω)
0.0145
0.020
0.0140
0.018
0.0135
0.015
0.0130
VGS = 4.5V
ID = 8.0A
0.013
0.0125
0.0120 0 20 40 60 80 100 ID , Drain Current (A)
0.010 2.5 3.5 4.5 5.5
VGS, Gate -to -Source Voltage (V)
Fig 12. On-Resistance Vs. Drain Current
Current Regulator Same Type as D.U.T.
Fig 13. On-Resistance Vs. Gate Voltage
50KΩ 12V .2µF .3µF
VGS
QGS
D.U.T. + V - DS
QG QGD
250
VG
ID TOP
Charge
VGS
3mA
200
Current Sampling Resistors
EAS , Single Pulse Avalanche Energy (mJ)
IG
ID
BOTTOM
3.6A 6.4A 8.0A
Fig 14a&b. Basic Gate Charge Test Circuit and Waveform
150
100
15V
V(BR)DSS tp
VDS L
50
DRIVER
RG
20V
D.U.T
IAS
+ V - DD
0 25 50 75 100 125 150
A
I AS
tp
0.01Ω
Starting T , Junction Temperature J
( °C)
Fig 15a&b. Unclamped Inductive Test circuit and Waveforms
Fig 15c. Maximum Avalanche Energy Vs. Drain Current
6
www.irf.com
IRF7910
SO-8 Package Details
D A 5 B
DIM A b INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMET ERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A1 .0040
8 6 E 1
7
6
5 H 0.25 [.010] A
c D E e e1 H K L y
2
3
4
.050 BAS IC .025 BAS IC .2284 .0099 .016 0° .2440 .0196 .050 8°
1.27 BASIC 0.635 BAS IC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8°
6X
e
e1 A C 0.10 [.004] 8X b 0.25 [.010] A1 CAB y
K x 45°
8X L 7
8X c
NOTES: 1. DIMENSIONING & T OLERANCING PER ASME Y14.5M-1994. 2. CONT ROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE S HOWN IN MILLIMET ERS [INCHES]. 4. OUT LINE CONF ORMS T O JEDEC OUT LINE MS -012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS . MOLD PROTRUSIONS NOT T O EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS . MOLD PROTRUSIONS NOT T O EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD F OR SOLDERING TO A S UBS TRATE. 3X 1.27 [.050]
FOOT PRINT 8X 0.72 [.028]
6.46 [.255]
8X 1.78 [.070]
SO-8 Part Marking
EXAMPLE: THIS IS AN IRF7101 (MOSFET) DAT E CODE (YWW) Y = LAST DIGIT OF T HE YEAR WW = WEEK LOT CODE PART NUMBER
INTERNAT IONAL RECTIFIER LOGO
YWW XXXX F7101
www.irf.com
7
IRF7910
SO-8 Tape and Reel
TERMINAL NUMBER 1
12.3 ( .484 ) 11.7 ( .461 )
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00 (12.992) MAX.
14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Notes:
Repetitive rating; pulse width limited by
max. junction temperature.
Pulse width ≤ 300µs; duty cycle ≤ 2%. When mounted on 1 inch square copper board, t