0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF8113

IRF8113

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRF8113 - Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRF8113 数据手册
PD - 94637A IRF8113 HEXFET® Power MOSFET Applications l Synchronous MOSFET for Notebook Processor Power l Synchronous Rectifier MOSFET for Isolated DC-DC Converters in Networking Systems Benefits l Very Low RDS(on) at 4.5V VGS l Low Gate Charge l Fully Characterized Avalanche Voltage and Current VDSS RDS(on) max Qg Typ. 24nC 30V 5.6m:@VGS = 10V S S S G 1 8 A A D D D D 2 7 3 6 4 5 Top View SO-8 Absolute Maximum Ratings Parameter VDS VGS ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C PD @TA = 70°C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation Max. 30 ± 20 17.2 13.8 135 2.5 1.6 0.02 -55 to + 150 Units V f f c A W Linear Derating Factor Operating Junction and Storage Temperature Range W/°C °C Thermal Resistance RθJL RθJA g Junction-to-Ambient fg Junction-to-Drain Lead Parameter Typ. ––– ––– Max. 20 50 Units °C/W Notes  through … are on page 10 www.irf.com 1 1/5/04 IRF8113 Static @ TJ = 25°C (unless otherwise specified) Parameter BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th) IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss td(on) tr td(off) tf Ciss Coss Crss Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units 30 ––– ––– ––– 1.5 ––– ––– ––– ––– ––– 73 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.024 4.7 5.8 ––– - 5.4 ––– ––– ––– ––– ––– 24 6.2 2.0 8.5 7.3 10.5 10 13 8.9 17 3.5 2910 600 250 ––– ––– 5.6 6.8 2.2 ––– 1.0 150 100 -100 ––– 36 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– pF VGS = 0V VDS = 15V ns nC nC VDS = 15V VGS = 4.5V ID = 13.3A S nA V mV/°C µA V mΩ Conditions VGS = 0V, ID = 250µA VGS = 10V, ID = 17.2A VGS = 4.5V, ID = 13.8A VDS = VGS, ID = 250µA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 15V, ID = 13.3A V/°C Reference to 25°C, ID = 1mA e e See Fig. 16 VDS = 10V, VGS = 0V VDD = 15V, VGS = 4.5V ID = 13.3A Clamped Inductive Load e ƒ = 1.0MHz Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current ™ d Typ. ––– ––– Max. 48 13.3 Units mJ A Diode Characteristics Parameter IS ISM VSD trr Qrr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– 34 21 3.1 A 135 1.0 51 32 V ns nC Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 13.3A, VGS = 0V TJ = 25°C, IF = 13.3A, VDD = 10V di/dt = 100A/µs Ù e e 2 www.irf.com IRF8113 1000 VGS 10V 4.5V 3.7V 3.5V 3.3V 3.0V 2.7V BOTTOM 2.5V TOP 1000 ID, Drain-to-Source Current (A) 100 ID, Drain-to-Source Current (A) 100 VGS 10V 4.5V 3.7V 3.5V 3.3V 3.0V 2.7V BOTTOM 2.5V TOP 2.5V 10 10 2.5V 20µs PULSE WIDTH Tj = 25°C 1 0.01 0.1 1 10 100 20µs PULSE WIDTH Tj = 150°C 1 0.01 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 2.0 100 RDS(on) , Drain-to-Source On Resistance ID, Drain-to-Source Current (Α) ID = 16.6A VGS = 10V 1.5 T J = 25°C 10 (Normalized) T J = 150°C 1.0 1 2.5 3.0 VDS = 15V 20µs PULSE WIDTH 3.5 4.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 VGS , Gate-to-Source Voltage (V) T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com 3 IRF8113 100000 VGS , Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, C ds SHORTED Crss = Cgd Coss = Cds + Cgd 12 ID= 13.3A 10 8 6 4 2 0 VDS= 24V VDS= 15V C, Capacitance (pF) 10000 Ciss 1000 Coss Crss 100 1 10 100 0 10 20 30 40 50 60 VDS, Drain-to-Source Voltage (V) Q G Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000.0 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100.0 T J = 150°C 10.0 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 10 100µsec 1msec 1.0 T J = 25°C VGS = 0V 1 Tc = 25°C Tj = 150°C Single Pulse 0.1 1.0 10.0 10msec 0.1 0.2 0.4 0.6 0.8 1.0 1.2 VSD, Source-toDrain Voltage (V) 0.1 100.0 1000.0 VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRF8113 18 2.2 VGS(th) Gate threshold Voltage (V) 16 14 2.0 1.8 ID , Drain Current (A) 12 10 8 6 4 2 0 25 50 75 100 125 150 ID = 250µA 1.6 1.4 1.2 1.0 0.8 -75 -50 -25 0 25 50 75 100 125 150 T J , Junction Temperature (°C) T J , Temperature ( °C ) Fig 9. Maximum Drain Current Vs. Case Temperature Fig 10. Threshold Voltage Vs. Temperature 100 Thermal Response ( Z thJA ) 10 D = 0.50 0.20 0.10 0.05 1 0.02 0.01 τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ4 Ri (°C/W) 0.924 13.395 22.046 14.911 τi (sec) 0.000228 0.1728 1.5543 22.5 0.1 τ1 τ2 τ3 τ4 0.01 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.001 0.01 0.1 1 10 100 0.001 1E-006 1E-005 0.0001 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 IRF8113 200 EAS, Single Pulse Avalanche Energy (mJ) 15V 160 VDS L DRIVER ID 7.3A 8.2A BOTTOM 13.3A TOP RG VGS 20V D.U.T IAS tp + V - DD 120 A 0.01Ω 80 Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp 40 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 12c. Maximum Avalanche Energy Vs. Drain Current LD I AS VDS Fig 12b. Unclamped Inductive Waveforms + VDD D.U.T Current Regulator Same Type as D.U.T. VGS Pulse Width < 1µs Duty Factor < 0.1% 50KΩ 12V .2µF .3µF Fig 14a. Switching Time Test Circuit D.U.T. + V - DS VDS 90% VGS 3mA 10% IG ID VGS td(on) tr td(off) tf Current Sampling Resistors Fig 13. Gate Charge Test Circuit Fig 14b. Switching Time Waveforms 6 www.irf.com IRF8113 D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Vgs Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 16. Gate Charge Waveform www.irf.com 7 IRF8113 Power MOSFET Selection for Non-Isolated DC/DC Converters Control FET Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the Rds(on) of the MOSFET, but these conduction losses are only about one half of the total losses. Power losses in the control switch Q1 are given by; Synchronous FET The power loss equation for Q2 is approximated by; * P =P loss conduction + P drive + P output P = Irms × Rds(on) loss + (Qg × Vg × f ) ( 2 ) Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput This can be expanded and approximated by; Q  +  oss × Vin × f + (Qrr × Vin × f ) 2  *dissipated primarily in Q1. For the synchronous MOSFET Q2, Rds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Qoss and reverse recovery charge Qrr both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs’ susceptibility to Cdv/dt turn on. The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and Vin. As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current . The ratio of Qgd/Qgs1 must be minimized to reduce the potential for Cdv/dt turn on. Ploss = (Irms × Rds(on ) ) 2   Qgs 2  Qgd +I × × Vin × f  +  I × × Vin × f  ig ig    + (Qg × Vg × f ) +  Qoss × Vin × f  2  This simplified loss equation includes the terms Qgs2 and Qoss which are new to Power MOSFET data sheets. Qgs2 is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Qgs1 and Qgs2, can be seen from Fig 16. Qgs2 indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to Idmax at which time the drain voltage begins to change. Minimizing Qgs2 is a critical factor in reducing switching losses in Q1. Qoss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Qoss is formed by the parallel combination of the voltage dependant (nonlinear) capacitance’s Cds and Cdg when multiplied by the power supply input buss voltage. Figure A: Qoss Characteristic 8 www.irf.com IRF8113 SO-8 Package Details D A 5 B DIM A b INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 A1 .0040 6 E 8 7 6 5 H 0.25 [.010] A c D E e e1 H 1 2 3 4 .050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8° 1.27 BAS IC 0.635 BAS IC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8° 6X e K L y e1 A K x 45° C 0.10 [.004] y 8X c 8X b 0.25 [.010] A1 CAB 8X L 7 NOT ES : 1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994. 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ]. 4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010]. 7 DIMENS ION IS THE LENGT H OF LEAD F OR S OLDERING T O A S UBS T RAT E. 3X 1.27 [.050] 6.46 [.255] FOOT PRINT 8X 0.72 [.028] 8X 1.78 [.070] SO-8 Part Marking EXAMPLE: T HIS IS AN IRF7101 (MOSFET ) DAT E CODE (YWW) Y = LAS T DIGIT OF T HE YEAR WW = WEEK LOT CODE PART NUMBER 9 INT ERNATIONAL RECT IFIER LOGO www.irf.com YWW XXXX F7101 IRF8113 SO-8 Tape and Reel TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Notes:  Repetitive rating; pulse width limited by max. junction temperature. ‚ Starting TJ = 25°C, L = 0.54mH RG = 25Ω, IAS = 13.3A. ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%. „ When mounted on 1 inch square copper board … Rθ is measured at TJ approximately 90°C Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.1/04 10 www.irf.com
IRF8113 价格&库存

很抱歉,暂时无法提供与“IRF8113”相匹配的价格&库存,您可以联系我们找货

免费人工找货