0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF830APBF

IRF830APBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRF830APBF - HEXFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRF830APBF 数据手册
PD- 94820 SMPS MOSFET Applications Switch Mode Power Supply ( SMPS ) Uninterruptable Power Supply High speed power switching Lead-Free Benefits Low Gate Charge Qg results in Simple Drive Requirement Improved Gate, Avalanche and dynamic dv/dt Ruggedness Fully Characterized Capacitance and Avalanche Voltage and Current Effective Coss specified ( See AN 1001) IRF830APbF HEXFET® Power MOSFET VDSS 500V Rds(on) max 1.40Ω ID 5.0A TO-220AB GDS Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torqe, 6-32 or M3 screw Max. 5.0 3.2 20 74 0.59 ± 30 5.3 -55 to + 150 300 (1.6mm from case ) 10 lbf•in (1.1N•m) Units A W W/°C V V/ns °C Typical SMPS Topologies: Two transistor Forward Half Bridge and Full Bridge Notes through are on page 8 www.irf.com 1 11/5/03 IRF830APbF Static @ TJ = 25°C (unless otherwise specified) Parameter Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage V(BR)DSS IDSS IGSS Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. 500 ––– ––– 2.0 ––– ––– ––– ––– Typ. ––– 0.60 ––– ––– ––– ––– ––– ––– Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 1.4 Ω VGS = 10V, ID = 3.0A 4.5 V VDS = VGS, ID = 250µA 25 VDS = 500V, VGS = 0V µA 250 VDS = 400V, VGS = 0V, TJ = 125°C 100 VGS = 30V nA -100 VGS = -30V Max. Units Conditions ––– S VDS = 50V, ID = 3.0A 24 ID = 5.0A 6.3 nC VDS = 400V 11 VGS = 10V, See Fig. 6 and 13 ––– VDD = 250V ––– ID = 5.0A ns ––– RG = 14Ω ––– RD = 49Ω,See Fig. 10 ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 400V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 400V Dynamic @ TJ = 25°C (unless otherwise specified) gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 2.8 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– ––– 10 21 21 15 620 93 4.3 886 27 39 Avalanche Characteristics Parameter EAS IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Typ. ––– ––– ––– Max. 230 5.0 7.4 Units mJ A mJ Thermal Resistance Parameter RθJC RθCS RθJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Typ. ––– 0.50 ––– Max. 1.7 ––– 62 Units °C/W Diode Characteristics Min. Typ. Max. Units IS ISM VSD trr Qrr ton 2 Conditions D MOSFET symbol ––– ––– 5.0 showing the A G integral reverse ––– ––– 20 S p-n junction diode. ––– ––– 1.5 V TJ = 25°C, IS = 5.0A, VGS = 0V ––– 430 650 ns TJ = 25°C, IF = 5.0A ––– 1.62 2.4 µC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRF830APbF 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 100 I D , Drain-to-Source Current (A) 10 I D , Drain-to-Source Current (A) 10 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 1 1 0.1 4.5V 20µs PULSE WIDTH TJ = 25 °C 1 10 100 4.5V 0.01 0.1 0.1 20µs PULSE WIDTH TJ = 150 °C 1 10 100 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID = 5.0A I D , Drain-to-Source Current (A) 2.0 10 TJ = 150 ° C TJ = 25 ° C 1 1.5 1.0 0.5 0.1 4.0 V DS = 50V 20µs PULSE WIDTH 5.0 6.0 7.0 8.0 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 VGS , Gate-to-Source Voltage (V) TJ , Junction Temperature( °C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com 3 IRF830APbF 10000 VGS , Gate-to-Source Voltage (V) V GS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + C gd 20 ID = 5.0A 16 C, Capacitance (pF) 1000 VDS = 400V VDS = 250V VDS = 100V Ciss 12 100 Coss 8 10 4 Crss 1 1 10 100 1000 A 0 FOR TEST CIRCUIT SEE FIGURE 13 0 4 8 12 16 20 24 VDS , Drain-to-Source Voltage (V) QG , Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 100 100 ISD , Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) ID , Drain Current (A) 10us 10 100us 10 TJ = 150 ° C 1ms 1 10ms 1 TJ = 25 ° C 0.1 0.2 V GS = 0 V 0.4 0.6 0.8 1.0 1.2 0.1 TC = 25 ° C TJ = 150 ° C Single Pulse 10 100 1000 10000 VSD ,Source-to-Drain Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRF830APbF 5.0 VDS VGS RD 4.0 ID , Drain Current (A) RG D.U.T. + -VDD 3.0 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 2.0 Fig 10a. Switching Time Test Circuit 1.0 VDS 90% 0.0 25 50 75 100 125 150 TC , Case Temperature ( °C) Fig 9. Maximum Drain Current Vs. Case Temperature 10% VGS td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms 10 Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.10 0.1 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) 0.01 0.00001 0.0001 0.001 0.0 t1 , Rectangular Pulse Durat Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF830APbF EAS , Single Pulse Avalanche Energy (mJ) 15V 500 VDS L DRIVER 400 ID 2.2A 3.2A BOTTOM 5.0A TOP RG 20V D.U.T IAS tp + V - DD 300 A 0.01Ω 200 Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp 100 0 25 Starting T , Junction Temperature( °C) J 50 75 100 125 150 I AS Fig 12b. Unclamped Inductive Waveforms QG Fig 12c. Maximum Avalanche Energy Vs. Drain Current 10 V QGS QGD V DSav , Avalanche Voltage (V) 790 VG 785 Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 780 50KΩ 12V .2µF .3µF 775 D.U.T. VGS 3mA + V - DS 770 0.0 1.0 2.0 3.0 4.0 5.0 A I av , Avalanche Current (A) IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit Fig 12d. Typical Drain-to-Source Voltage Vs. Avalanche Current 6 www.irf.com IRF830APbF Peak Diode Recovery dv/dt Test Circuit D.U.T + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + + - RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test + VDD Driver Gate Drive P.W. Period D= P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt VDD Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFETS www.irf.com 7 IRF830APbF TO-220AB Package Outline 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 3 LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 21- GATE DRAIN 1- GATE 32- DRAINSOURCE 2- COLLECTOR 3- EMITTER 3- SOURCE 4 - DRAIN LEAD ASSIGNMENTS HEXFET 14.09 (.555) 13.47 (.530) 4- DRAIN 4.06 (.160) 3.55 (.140) 4- COLLECTOR 3X 3X 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) M BAM 3X 0.55 (.022) 0.46 (.018) 0.36 (.014) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 2.92 (.115) 2.64 (.104) 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C" INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER Note: "P" in assembly line position indicates "Lead-Free" DATE CODE YEAR 7 = 1997 WEEK 19 LINE C Notes: Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 ) Starting TJ = 25°C, L = 18mH RG = 25Ω, IAS = 5.0A. (See Figure 12) ISD ≤ 5.0A, di/dt ≤ 370A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C Pulse width ≤ 300µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/03 8 www.irf.com
IRF830APBF 价格&库存

很抱歉,暂时无法提供与“IRF830APBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货