0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF8910

IRF8910

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRF8910 - HEXFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRF8910 数据手册
PD - 95868 IRF8910 HEXFET® Power MOSFET Applications l Dual SO-8 MOSFET for POL converters in desktop, servers, graphics cards, game consoles and set-top box Benefits l Very Low RDS(on) at 4.5V VGS l Ultra-Low Gate Impedance l Fully Characterized Avalanche Voltage and Current l 20V VGS Max. Gate Rating VDSS 20V 13.4m:@VGS = 10V 1 2 3 4 RDS(on) max ID 10A S1 G1 S2 G2 8 7 6 5 D1 D1 D2 D2 Top View SO-8 Absolute Maximum Ratings Parameter VDS VGS ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C PD @TA = 70°C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Max. 20 ± 20 10 8.3 82 2.0 1.3 0.016 -55 to + 150 Units V c A W W/°C °C Thermal Resistance Parameter RθJL RθJA Junction-to-Drain Lead Junction-to-Ambient Typ. ––– ––– Max. 20 62.5 Units °C/W fg Notes  through … are on page 10 www.irf.com 1 4/28/04 IRF8910 Static @ TJ = 25°C (unless otherwise specified) Parameter BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th)/∆TJ IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss td(on) tr td(off) tf Ciss Coss Crss Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Parameter Single Pulse Avalanche Energy Avalanche Current Min. Typ. Max. Units 20 ––– ––– ––– 1.65 ––– ––– ––– ––– ––– 24 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.015 10.7 14.6 ––– -4.8 ––– ––– ––– ––– ––– 7.4 2.4 0.80 2.5 1.7 3.3 4.4 6.2 10 9.7 4.1 960 300 160 ––– ––– 13.4 18.3 2.55 ––– 1.0 150 100 -100 ––– 11 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– pF nC ns nC V Conditions VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 10A V VGS = 4.5V, ID = 8.0A VDS = VGS, ID = 250µA e e mV/°C µA VDS = 16V, VGS = 0V nA S VDS = 16V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 10V, ID = 8.2A VDS = 10V VGS = 4.5V ID = 8.2A See Fig. 6 VDS = 10V, VGS = 0V VDD = 10V, VGS = 4.5V ID = 8.2A Clamped Inductive Load VGS = 0V VDS = 10V ƒ = 1.0MHz Max. 19 8.2 Units mJ A Avalanche Characteristics EAS IAR ™ d Diode Characteristics Parameter IS ISM VSD trr Qrr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– 17 6.5 2.5 A 82 1.0 26 9.7 V ns nC Conditions MOSFET symbol showing the integral reverse G D Ù S p-n junction diode. TJ = 25°C, IS = 8.2A, VGS = 0V TJ = 25°C, IF = 8.2A, VDD = 10V di/dt = 100A/µs e e 2 www.irf.com IRF8910 100 TOP VGS 10V 8.0V 5.5V 4.5V 3.5V 3.0V 2.8V 2.5V 100 TOP VGS 10V 8.0V 5.5V 4.5V 3.5V 3.0V 2.8V 2.5V ID, Drain-to-Source Current (A) 10 BOTTOM ID, Drain-to-Source Current (A) BOTTOM 1 10 2.5V 0.1 ≤60µs PULSE WIDTH 0.01 0.1 1 Tj = 25°C 1 100 0.1 10 2.5V ≤60µs PULSE WIDTH Tj = 150°C 10 100 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100 1.5 10 T J = 150°C 1 T J = 25°C RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (Α) ID = 10A VGS = 10V 1.0 0.1 1 2 3 VDS = 10V ≤60µs PULSE WIDTH 4 5 6 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 VGS, Gate-to-Source Voltage (V) T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature www.irf.com 3 IRF8910 10000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd 6.0 ID= 8.2A VGS, Gate-to-Source Voltage (V) 5.0 4.0 3.0 2.0 1.0 0.0 VDS= 16V VDS= 10V C, Capacitance(pF) 1000 Ciss Coss Crss 100 1 10 100 0 1 2 3 4 5 6 7 8 9 10 VDS, Drain-to-Source Voltage (V) QG Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 100.00 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 10.00 T J = 150°C 1.00 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 10 100µsec 1msec 0.10 T J = 25°C 1 0.01 0.2 0.4 0.6 0.8 1.0 VGS = 0V T A = 25°C Tj = 150°C Single Pulse 0 1 10 10msec 0.1 1.2 1.4 1.6 100 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRF8910 10 VGS(th) Gate threshold Voltage (V) 2.5 9 8 ID, Drain Current (A) 7 6 5 4 3 2 1 0 25 50 75 100 125 150 T A , Ambient Temperature (°C) 2.0 ID = 250µA 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Ambient Temperature Fig 10. Threshold Voltage vs. Temperature 100 D = 0.50 Thermal Response ( Z thJA ) 10 0.20 0.10 0.05 1 0.02 0.01 τJ τJ τ1 τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τ4 R5 R5 τ5 Ri (°C/W) 1.2647 τC τC τi (sec) 0.000091 0.000776 0.188739 0.757700 2.0415 18.970 23.415 16.803 τ2 τ3 τ4 τ5 0.1 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi/Ri Ci= τi/Ri 25.10000 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.1 1 10 100 0.01 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 IRF8910 RDS(on) , Drain-to -Source On Resistance (mΩ) 40.00 80 EAS , Single Pulse Avalanche Energy (mJ) ID = 10A 30.00 70 60 50 40 30 20 10 0 ID TOP 3.4A 4.9A BOTTOM 8.2A 20.00 T J = 125°C 10.00 T J = 25°C 0.00 3 4 5 6 7 8 9 10 25 50 75 100 125 150 VGS, Gate -to -Source Voltage (V) Starting T J , Junction Temperature (°C) Fig 12. On-Resistance vs. Gate Voltage Fig 13. Maximum Avalanche Energy vs. Drain Current Current Regulator Same Type as D.U.T. V(BR)DSS 15V tp 12V .2µF DRIVER 50KΩ .3µF VDS L D.U.T. RG 20V VGS + V - DS D.U.T IAS tp + - VDD A VGS 0.01Ω I AS 3mA Fig 14. Unclamped Inductive Test Circuit and Waveform LD VDS IG ID Current Sampling Resistors Fig 15. Gate Charge Test Circuit + V DD - 90% VDS D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% 10% VGS td(on) tr td(off) tf Fig 16. Switching Time Test Circuit Fig 17. Switching Time Waveforms 6 www.irf.com IRF8910 D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD VDD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Vgs Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 16. Gate Charge Waveform www.irf.com 7 IRF8910 Power MOSFET Selection for Non-Isolated DC/DC Converters Control FET Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the Rds(on) of the MOSFET, but these conduction losses are only about one half of the total losses. Power losses in the control switch Q1 are given by; Synchronous FET The power loss equation for Q2 is approximated by; * Ploss = Pconduction + P + Poutput drive Ploss = Irms × Rds(on) + ( g × Vg × f ) Q ( 2 ) Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput This can be expanded and approximated by; ⎛Q ⎞ + ⎜ oss × Vin × f + (Qrr × Vin × f ) ⎝2 ⎠ *dissipated primarily in Q1. For the synchronous MOSFET Q2, Rds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Qoss and reverse recovery charge Qrr both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs’ susceptibility to Cdv/dt turn on. The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and Vin. As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current . The ratio of Qgd/Qgs1 must be minimized to reduce the potential for Cdv/dt turn on. Ploss = (Irms 2 × Rds(on ) ) ⎛ Qgs 2 Qgd ⎞⎛ ⎞ +⎜I × × Vin × f ⎟ + ⎜ I × × Vin × f ⎟ ig ig ⎝ ⎠⎝ ⎠ + (Qg × Vg × f ) + ⎛ Qoss × Vin × f ⎞ ⎝2 ⎠ This simplified loss equation includes the terms Qgs2 and Qoss which are new to Power MOSFET data sheets. Qgs2 is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Qgs1 and Qgs2, can be seen from Fig 16. Qgs2 indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to Idmax at which time the drain voltage begins to change. Minimizing Qgs2 is a critical factor in reducing switching losses in Q1. Qoss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Qoss is formed by the parallel combination of the voltage dependant (nonlinear) capacitance’s Cds and Cdg when multiplied by the power supply input buss voltage. 8 Figure A: Qoss Characteristic www.irf.com IRF8910 SO-8 Package Details Dimensions are shown in millimeters (inches) 9 6 ' & ! % " $ 7 9DH 6 6 i DI8C@T HDI H6Y $"! %'' #  " &$  '( (' ! ('  (%' HDGGDH@U@ST HDI H6Y "$ &$   ""  ( #' !$ $ !$ $ % @ $ # C !$Ãb dà 6 p 9 @ r r C  #(&  $&# $ÃÃ76TD8 !$ÃÃ76TD8 !!'# !## ((  % à  (% $ Ã'ƒ "' # !&ÃÃ76TD8 %"$ÃÃ76TD8 $' %! !$ # à $ !& Ã'ƒ %Y r F G ’ r 6 FÑÃ#$ƒ 8  Ãb#dà ’ 'YÃG & 'YÃp 'YÃi !$Ãb dà 6 867 IPU@T) ÃÃ9DH@ITDPIDIBÃÉÃUPG@S6I8DIBÃQ@SÃ6TH@Ã` #$H ((# !ÃÃ8PIUSPGGDIBÃ9DH@ITDPI)ÃHDGGDH@U@S "ÃÃ9DH@ITDPITÃ6S@ÃTCPXIÃDIÃHDGGDH@U@STÃbDI8C@Td #ÃÃPVUGDI@Ã8PIAPSHTÃUPÃE@9@8ÃPVUGDI@ÃHT !66 $ÃÃÃ9DH@ITDPIÃ9P@TÃIPUÃDI8GV9@ÃHPG9ÃQSPUSVTDPIT ÃÃÃÃÃHPG9ÃQSPUSVTDPITÃIPUÃUPÃ@Y8@@9à $Ãb%d %ÃÃÃ9DH@ITDPIÃ9P@TÃIPUÃDI8GV9@ÃHPG9ÃQSPUSVTDPIT ÃÃÃÃÃHPG9ÃQSPUSVTDPITÃIPUÃUPÃ@Y8@@9Ã!$Ãb d &ÃÃÃ9DH@ITDPIÃDTÃUC@ÃG@IBUCÃPAÃG@69ÃAPSÃTPG9@SDIBÃUP ÃÃÃÃÃ6ÃTV7TUS6U@ APPUQSDIU 'YÃ&!Ãb!'d %#%Ãb!$$d "Yà !&Ãb$d 'Yà &'Ãb&d SO-8 Part Marking @Y6HQG@)ÃUCDTÃDTÃ6IÃDSA&  ÃHPTA@U 96U@Ã8P9@Ã`XX `Ã2ÃG6TUÃ9DBDUÃPAÃUC@Ã`@6S XXÃ2ÃX@@F GPUÃ8P9@ Q6SUÃIVH7@S 9 DIU@SI6UDPI6G S@8UDAD@S GPBP www.irf.com
IRF8910 价格&库存

很抱歉,暂时无法提供与“IRF8910”相匹配的价格&库存,您可以联系我们找货

免费人工找货