PD -9.1484B
IRF9Z24N
HEXFET® Power MOSFET
Advanced Process Technology Dynamic dv/dt Rating l 175°C Operating Temperature l Fast Switching l P-Channel l Fully Avalanche Rated Description
l l
D
VDSS = -55V RDS(on) = 0.175Ω
G
ID = -12A
S
Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.
TO-220AB
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ -10V Continuous Drain Current, VGS @ -10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw
Max.
-12 -8.5 -48 45 0.30 ± 20 96 -7.2 4.5 -5.0 -55 to + 175 300 (1.6mm from case ) 10 lbf•in (1.1N•m)
Units
A W W/°C V mJ A mJ V/ns °C
Thermal Resistance
Parameter
RθJC RθCS RθJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient
Typ.
––– 0.50 –––
Max.
3.3 ––– 62
Units
°C/W
8/27/97
IRF9Z24N
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)DSS
∆ V(BR)DSS/∆TJ
RDS(on) VGS(th) gfs IDSS I GSS Qg Q gs Q gd t d(on) tr t d(off) tf LD LS Ciss Coss Crss
Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance
Min. -55 ––– ––– -2.0 2.5 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
Typ. ––– -0.05 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 13 55 23 37 4.5 7.5 350 170 92
Max. Units Conditions ––– V VGS = 0V, ID = -250µA ––– V/°C Reference to 25°C, I D = -1mA 0.175 Ω VGS = -10V, I D = -7.2A -4.0 V VDS = VGS , ID = -250µA ––– S VDS = -25V, I D = -7.2A -25 VDS = -55V, VGS = 0V µA -250 VDS = -44V, VGS = 0V, T J = 150°C 100 V GS = 20V nA -100 VGS = -20V 19 ID = -7.2A 5.1 nC VDS = -44V 10 V GS = -10V, See Fig. 6 and 13 ––– VDD = -28V ––– I D = -7.2A ns ––– RG = 24 Ω ––– RD = 3.7Ω, See Fig. 10 Between lead, ––– 6mm (0.25in.) nH G from package ––– and center of die contact ––– VGS = 0V ––– pF VDS = -25V ––– ƒ = 1.0MHz, See Fig. 5
D
S
Source-Drain Ratings and Characteristics
IS
ISM
VSD t rr Q rr t on
Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time
Min. Typ. Max. Units
Conditions D MOSFET symbol ––– ––– -12 showing the A G integral reverse ––– ––– -48 p-n junction diode. S ––– ––– -1.6 V TJ = 25°C, IS = -7.2A, VGS = 0V ––– 47 71 ns TJ = 25°C, IF = -7.2A ––– 84 130 µC di/dt = -100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
ISD ≤ -7.2A, di/dt ≤ -280A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C
Starting TJ = 25°C, L = 3.7mH
RG = 25Ω, IAS = -7.2A. (See Figure 12)
Pulse width ≤ 300µs; duty cycle ≤ 2%.
IRF9Z24N
100
V GS - 15V - 10V - 8.0V - 7.0V - 6.0V - 5.5V - 5.0V BOTT OM - 4. 5V TOP
2 0µ s PU LS E W ID TH Tc = 2 5°C J
100
-ID , D ra in -to -S o u rce C u rre n t (A )
10
-ID , D ra in -to -S o u rc e C u rre n t (A )
V GS - 15V - 10V - 8.0V - 7.0V - 6.0V - 5.5V - 5.0V BOTT OM - 4. 5V TOP
10
- 4.5 V
1 0.1 1 10
-4.5 V A
100
1 0.1 1
2 0 µ s PU LSE W ID TH TC = 1 75°C J
10
100
A
-VD S , Drain-to-Source Voltage (V)
-VD S , Drain-to-Source V oltage (V )
Fig 1. Typical Output Characteristics,
Fig 2. Typical Output Characteristics,
100
2.0
R D S (o n ) , D ra in -to -S o u rc e O n R e si sta n ce (N o rm a li ze d )
I D = - 12 A
- I D , D ra in-t o-S o urc e C urre nt (A )
1.5
TJ = 2 5 °C
10
TJ = 1 7 5 °C
1.0
0.5
1 4 5 6 7
V DS = - 2 5 V 2 0 µ s P U L S E W ID T H
8 9 10
A
0.0 -60 -40 -20 0 20 40 60 80
VG S = - 10 V
100 120 140 160 180
A
-VG S , Ga te-to-S o urce V oltage (V )
T J , Junction T emperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
IRF9Z24N
700 20
-V G S , G a te -to -S o u rc e V o lta g e (V )
600
V GS C is s C rs s C os s
= = = =
0V , f = 1MH z C gs + C g d , Cds SH OR TED Cgd C ds + C gd
I D = - 7.2 A V DS = - 4 4V V DS = -2 8V
16
C , C a p a c ita n c e (p F )
500
C is s C os s
400
12
300
8
200
Crs s
4
100
0 1 10 100
A
0 0 5 10
F O R TEST C IR C U IT SEE F IGU R E 1 3
15 20 25
A
V D S , Drain-to-Source V oltage (V)
Q G , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
100
100
-IS D , R e ve rse D ra in C u rre n t (A )
O PER ATIO N IN TH IS AR EA LIM ITED BY R D S(o n)
1 0µs
10
TJ = 1 50°C
TJ = 25 °C
-I D , D ra in C u rre n t (A )
10
100µ s
1
1m s
0.1 0.4 0.6 0.8 1.0 1.2 1.4
VG S = 0 V
1.6
A
1 1
T C = 2 5°C T J = 1 75°C Sin gle Pu lse
10
10m s 100
1.8
A
-VS D , S ource-to-Drain V oltage (V )
-VD S , Drain-to-Source V oltage (V )
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
IRF9Z24N
12
VDS VGS
RD
-ID , D ra i n C u rre n t (A m p s )
D.U.T.
+
9
-10V
6 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
Fig 10a. Switching Time Test Circuit
3
td(on)
tr
t d(off)
tf
VGS
0 25 50 75 100 125 150
A
175
10%
TC , C ase T emperature (°C)
90%
Fig 9. Maximum Drain Current Vs. Case Temperature
VDS
Fig 10b. Switching Time Waveforms
10
T herm al R esponse (Z th J C )
D = 0 .5 0 1 0 .2 0 0 .1 0 0 .0 5 0 .0 2 0 .0 1 S IN G LE P U L S E (T H E R M A L R E S P O N S E )
Notes : 1. D uty fac tor D = t PDM
0.1
t
1
t
2
1
/t
2
0.01 0.00001
2. P ea k TJ = P DM x Z th JC + T C
0.0001
0.001
0.01
0.1
t 1 , R ectan gular P ulse D uratio n (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
-
RG
VDD
A
1
IRF9Z24N
E A S , S in g le P u ls e A va la n c h e E n e rg y (m J)
VDS L 250
TO P
200
RG
D .U .T IA S D R IV E R
0 .0 1 Ω
VD D A
B OTTO M
ID -2.9A -5.1 A -7.2 A
- 20V tp
150
100
15V
Fig 12a. Unclamped Inductive Test Circuit
50
0 25 50 75 100 125 150
A
175
I AS
Starting T J , Junction Temperature (°C)
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
tp V(BR)DSS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50KΩ
QG
12V
.2µF
VG
VGS
-3mA
Charge
IG
ID
Current Sampling Resistors
Fig 13a. Basic Gate Charge Waveform
Fig 13b. Gate Charge Test Circuit
+
QGS
QGD
D.U.T.
-
-10V
.3µF
VDS
IRF9Z24N
Peak Diode Recovery dv/dt Test Circuit
D.U.T*
+
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
-
+
RG VGS • dv/dt controlled by RG • I SD controlled by Duty Factor "D" • D.U.T. - Device Under Test
+ VDD
*
Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive P.W. Period D=
P.W. Period
[
VGS=10V
] ***
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
[
VDD
]
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
[
Ripple ≤ 5% ISD
]
*** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 14. For P-Channel HEXFETS
IRF9Z24N
Package Outline
TO-220AB Outline Dimensions are shown in millimeters (inches)
2 . 8 7 ( .1 1 3 ) 2 . 6 2 ( .1 0 3 ) 1 0 . 5 4 (. 4 1 5 ) 1 0 . 2 9 (. 4 0 5 ) 3 . 7 8 (. 1 4 9 ) 3 . 5 4 (. 1 3 9 ) -A6 . 4 7 (. 2 5 5 ) 6 . 1 0 (. 2 4 0 ) -B4 . 6 9 ( .1 8 5 ) 4 . 2 0 ( .1 6 5 ) 1 .3 2 (. 0 5 2 ) 1 .2 2 (. 0 4 8 )
4 1 5 . 2 4 ( .6 0 0 ) 1 4 . 8 4 ( .5 8 4 )
1 . 1 5 ( .0 4 5 ) M IN 1 2 3
L E A D A S S IG N M E N T S 1 - G A TE 2 - D R AIN 3 - SO URCE 4 - D R AIN
1 4 . 0 9 (.5 5 5 ) 1 3 . 4 7 (.5 3 0 )
4 . 0 6 (. 1 6 0 ) 3 . 5 5 (. 1 4 0 )
3X
1 .4 0 (. 0 5 5 ) 1 .1 5 (. 0 4 5 )
0 . 9 3 ( .0 3 7 ) 3 X 0 . 6 9 ( .0 2 7 ) 0 .3 6 (. 0 1 4 ) M BA M
3X
0 . 5 5 (. 0 2 2 ) 0 . 4 6 (. 0 1 8 )
2 . 5 4 ( .1 0 0 ) 2X NO TE S : 1 D I M E N S IO N I N G & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2 . 2 C O N T R O L L I N G D IM E N S IO N : I N C H
2 .9 2 (. 1 1 5 ) 2 .6 4 (. 1 0 4 )
3 O U T L IN E C O N F O R M S T O J E D E C O U T L I N E T O -2 2 0 A B . 4 H E A T S IN K & L E A D M E A S U R E M E N T S D O N O T IN C L U D E B U R R S .
Part Marking Information
TO-220AB E X AM : E X AM PLEPLET:HI T HI S A N AIRF 1010 S IS IS N IRF 1010 W A S A S S E MB W IT H IT H S E MB LY LY LO T CO 9B 9B LO T CO DE DE 1M 1M
A A
IN TE R NA T A L IN TE R NA T IONION A L R EC T IF R EC T IF IER IER IR F IR F 1010 1010 LO LO GO GO 9246 9246 9B 9B1M 1M A S S EM B A S S EM B LY LY LO T DE DE LO T CO CO
P A NU NU M BE P A RT RT M BE R R
D A C C OD D A TE TEOD E E (Y W ) (Y YW YW W ) Y Y Y Y YE A R A R = = YE W W = EK W W = W EW E EK
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ki, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 8/97