PD- 91809B
SMPS MOSFET
IRFB11N50A
HEXFET® Power MOSFET
Applications l Switch Mode Power Supply ( SMPS ) l Uninterruptable Power Supply l High speed power switching Benefits l Low Gate Charge Qg results in Simple Drive Requirement l Improved Gate, Avalanche and dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche Voltage and Current
VDSS
500V
Rds(on) max
0.52Ω
ID
11A
TO-220AB
GDS
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torqe, 6-32 or M3 screw
Max.
11 7.0 44 170 1.3 ± 30 6.9 -55 to + 150 300 (1.6mm from case ) 10 lbf•in (1.1N•m)
Units
A W W/°C V V/ns °C
Applicable Off Line SMPS Topologies:
l l l
Two Transistor Forward Half & Full Bridge Power Factor Correction Boost
through
are on page 8
Notes
www.irf.com
1
3/30/99
IRFB11N5OA
Static @ TJ = 25°C (unless otherwise specified)
V(BR)DSS RDS(on) VGS(th) IDSS IGSS Parameter Drain-to-Source Breakdown Voltage Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. 500 ––– 2.0 ––– ––– ––– ––– Typ. ––– ––– ––– ––– ––– ––– ––– Max. Units Conditions ––– V VGS = 0V, ID = 250µA 0.52 Ω VGS = 10V, ID = 6.6A 4.0 V VDS = VGS, ID = 250µA 25 VDS = 500V, VGS = 0V µA 250 VDS = 400V, VGS = 0V, TJ = 150°C 100 VGS = 30V nA -100 VGS = -30V
Dynamic @ TJ = 25°C (unless otherwise specified)
gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 6.1 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– ––– 14 35 32 28 1423 208 8.1 2000 55 97 Max. Units Conditions ––– S VDS = 50V, ID = 6.6A 52 ID = 11A 13 nC VDS = 400V 18 VGS = 10V, See Fig. 6 and 13 ––– VDD = 250V ––– ID = 11A ns ––– RG = 9.1Ω ––– RD = 22Ω,See Fig. 10 ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 400V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 400V
Avalanche Characteristics
Parameter
EAS IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy
Typ.
––– ––– –––
Max.
275 11 17
Units
mJ A mJ
Thermal Resistance
Parameter
RθJC RθCS RθJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient
Typ.
––– 0.50 –––
Max.
0.75 ––– 62
Units
°C/W
Diode Characteristics
IS
ISM
VSD trr Qrr ton
Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time
Min. Typ. Max. Units
Conditions D MOSFET symbol 11 ––– ––– showing the A G integral reverse ––– ––– 44 S p-n junction diode. ––– ––– 1.5 V TJ = 25°C, IS = 11A, VGS = 0V ––– 510 770 ns TJ = 25°C, IF = 11A ––– 3.4 5.1 µC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.irf.com
IRFB11N50A
100
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
100
I D , Drain-to-Source Current (A)
10
I D , Drain-to-Source Current (A)
4.5V 20µs PULSE WIDTH
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
10
1
0.1 0.1
TJ = 25 °C
1 10 100
4.5V
1 1 10
20µs PULSE WIDTH TJ = 150 °C
100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
3.0
ID = 11A
RDS(on) , Drain-to-Source On Resistance (Normalized)
I D , Drain-to-Source Current (A)
2.5
10
2.0
TJ = 150 ° C TJ = 25 ° C
1
1.5
1.0
0.5
0.1 4.0
V DS = 50V 20µs PULSE WIDTH 5.0 6.0 7.0 8.0 9.0
0.0 -60 -40 -20
VGS = 10V
0 20 40 60 80 100 120 140 160
VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature ( °C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRFB11N5OA
2400
2000
VGS , Gate-to-Source Voltage (V)
V GS C is s C rss C oss
= = = =
0V, f = 1M Hz C g s + C g d , Cd s S H O R T E D C gd C ds + C gd
20
ID = 11A 6.6A VDS = 400V VDS = 250V VDS = 100V
C , C a pa c itan c e (p F )
C is s
1600
16
C oss
1200
12
8
800
Crs s
400
4
0 1 10 100 1000
A
0 0 10 20
FOR TEST CIRCUIT SEE FIGURE 13
30 40 50
V D S , D rain-to-S ource V olta g e ( V )
Q G , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
100
1000
OPERATION IN THIS AREA LIMITED BY RDS(on)
ISD , Reverse Drain Current (A)
100
10
ID , Drain Current (A)
TJ = 150 ° C
10us 10 100us 1ms 1 10ms
1
TJ = 25 ° C
0.1 0.0
V GS = 0 V
0.4 0.8 1.2 1.6
0.1
TC = 25 ° C TJ = 150 ° C Single Pulse
10 100 1000 10000
VSD ,Source-to-Drain Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRFB11N50A
12
VDS VGS RG
RD
10
D.U.T.
+
I D , Drain Current (A)
8
-VDD
10V
6
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
4
Fig 10a. Switching Time Test Circuit
VDS 90%
2
0 25 50 75 100 125 150
TC , Case Temperature
( °C)
10% VGS
Fig 9. Maximum Drain Current Vs. Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
1
Thermal Response (Z thJC )
D = 0.50
0.20 0.1
0.10 0.05 0.02 0.01 P DM t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.01 0.1 1
0.01 0.00001
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFB11N5OA
1 5V
600
EAS , Single Pulse Avalanche Energy (mJ)
TOP
500
VDS
L
D R IV E R
BOTTOM
ID 4.9A 7.0A 11A
400
RG
20V tp
D .U .T
IA S
+ V - DD
A
300
0 .0 1 Ω
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D SS tp
200
100
0 25 50 75 100 125 150
Starting TJ , Junction Temperature ( °C)
IAS
Fig 12b. Unclamped Inductive Waveforms
QG
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
10 V
QGS VG QGD
V D S a v , Avalanche V oltage (V)
660
640
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator Same Type as D.U.T.
620
50KΩ 12V .2µF .3µF
600
D.U.T. VGS
3mA
+ V - DS
580 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
A
I av , A valanche C urrent ( A )
IG ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
Fig 12d. Typical Drain-to-Source Voltage Vs. Avalanche Current
6
www.irf.com
IRFB11N50A
Peak Diode Recovery dv/dt Test Circuit
D.U.T
+
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
-
+
RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
+ VDD
Driver Gate Drive P.W. Period D=
P.W. Period VGS=10V
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
VDD
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFETS
www.irf.com
7
IRFB11N5OA
Package Outline
TO-220AB Outline Dimensions are shown in millimeters (inches)
2 .8 7 (.1 1 3 ) 2 .6 2 (.1 0 3 ) 1 0 .5 4 (.4 1 5 ) 1 0 .2 9 (.4 0 5 ) 3 .7 8 ( .1 4 9 ) 3 .5 4 ( .1 3 9 ) -A 6 .4 7 (.2 5 5 ) 6 .1 0 (.2 4 0 ) -B4 .6 9 ( .1 8 5 ) 4 .2 0 ( .1 6 5 ) 1 .3 2 (. 0 5 2 ) 1 .2 2 (. 0 4 8 )
4 1 5 .2 4 ( .6 0 0 ) 1 4 .8 4 ( .5 8 4 )
1 .1 5 (.0 4 5 ) M IN 1 2 3
L E A D A S S IG N M E N T S 1 - G ATE 2 - D R A IN 3 - S OU RC E 4 - D R A IN
1 4 .0 9 ( .5 5 5 ) 1 3 .4 7 ( .5 3 0 )
4 .0 6 (.1 6 0 ) 3 .5 5 (.1 4 0 )
3X 3X 1 .4 0 ( .0 5 5 ) 1 .1 5 ( .0 4 5 )
0 .9 3 (.0 3 7 ) 0 .6 9 (.0 2 7 ) M B A M
3X
0 .5 5 (.0 2 2 ) 0 .4 6 (.0 1 8 )
0 .3 6 (.0 1 4 )
2 .5 4 (.1 0 0 ) 2X N OTE S : 1 D IM E N S IO N IN G & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2 . 2 C O N T R O L L IN G D IM E N S IO N : IN C H
2 .9 2 (.1 1 5 ) 2 .6 4 (.1 0 4 )
3 O U T L IN E C O N F O R M S T O J E D E C O U T L IN E T O -2 2 0 A B . 4 H E A T S IN K & L E A D M E A S U R E M E N T S D O N O T IN C L U D E B U R R S .
Part Marking Information
TO-220AB
E XA M P LE : TH IS IS A N IR F 1 0 1 0 W ITH A S S E M B L Y L OT C O D E 9 B 1 M
A
IN T E R N A T IO N A L R E C TIFIE R LOGO A SS E MB LY LOT COD E
P A RT NU M B ER IR F 1 0 10 9246 9B 1M
D A TE C O D E (Y Y W W ) YY = YE A R W W = W E EK
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Pulse width ≤ 300µs; duty cycle ≤ 2%.
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
Starting TJ = 25°C, L = 4.5mH
TJ ≤ 150°C
RG = 25Ω, IAS = 11A. (See Figure 12)
ISD ≤ 11A, di/dt ≤ 140A/µs, VDD ≤ V(BR)DSS,
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 221 8371 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice 3/99
8
www.irf.com