0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFB13N50APBF

IRFB13N50APBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRFB13N50APBF - SMPS MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRFB13N50APBF 数据手册
SMPS MOSFET PD - 95122 IRFB13N50APbF HEXFET® Power MOSFET Applications l Switch Mode Power Supply (SMPS) l Uninterruptible Power Supply l High Speed Power Switching l Lead-Free VDSS 500V RDS(on) max 0.450 Ω ID 14A Benefits l Low Gate Charge Qg results in Simple Drive Requirement l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche Voltage and Current TO-220AB Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current  Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt ƒ Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case ) Mounting torqe, 6-32 or M3 screw Max. 14 9.1 56 250 2.0 ± 30 9.2 -55 to + 150 300 10 Units A W W/°C V V/ns °C lbf•in (1.1N•m) Avalanche Characteristics Symbol EAS IAR EAR Parameter Single Pulse Avalanche Energy‚ Avalanche Current Repetitive Avalanche Energy Typ. ––– ––– ––– Max. 560 14 25 Units mJ A mJ Thermal Resistance Parameter RθJC RθCS RθJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Typ. ––– 0.50 ––– Max. 0.50 ––– 62 Units °C/W www.irf.com 1 3/18/04 IRFB13N50APbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS IGSS Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. Typ. Max. Units Conditions 500 ––– ––– V VGS = 0V, ID = 250µA ––– 0.55 ––– V/°C Reference to 25°C, I D = 1mA ––– ––– 0.450 Ω VGS = 10V, ID = 8.4A „ 2.0 ––– 4.0 V VDS = VGS, ID = 250µA ––– ––– 25 VDS = 500V, VGS = 0V µA ––– ––– 250 VDS = 400V, VGS = 0V, TJ = 125°C ––– ––– 100 VGS = 30V nA ––– ––– -100 VGS = -30V Min. 8.1 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– ––– 15 39 39 31 1910 290 11 2730 82 160 Max. Units Conditions ––– S VDS = 50V, ID = 8.4A 81 ID = 14A 20 nC VDS = 400V 36 VGS = 10V, See Fig. 6 and 13 „ ––– VDD = 250V ––– ID = 14A ns ––– R G = 7.5Ω ––– VGS = 10V,See Fig. 10 „ ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 400V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 400V … Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 14A, VGS = 0V TJ = 125°C, IF = 14A di/dt = 100A/µs „ Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Symbol IS ISM Diode Characteristics Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)  Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Reverse RecoveryCurrent Forward Turn-On Time Min. Typ. Max. Units ––– ––– ––– ––– 14 A 56 D S VSD trr Q rr iRRM ton Notes: ––– ––– 1.5 V „ ––– 370 550 ns ––– 4.4 6.5 µC ––– 21 31 A Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 11) ‚ Starting TJ = 25°C, L = 5.7mH, RG = 25Ω, IAS = 14A, dv/dt = 7.6V/ns. (See Figure 12a) „ Pulse width ≤ 300µs; duty cycle ≤ 2%. … Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. ƒ ISD ≤ 14A, di/dt ≤ 250A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C. 2 www.irf.com IRFB13N50APbF 100 TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 TOP 10 I D, Drain-to-Source Current (A) BOTTOM I D, Drain-to-Source Current (A) BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 10 1 4.5V 4.5V 1 0.1 0.01 0.1 1 20µs PULSE WIDTH T J= 25 ° C 10 100 0.1 0.1 1 20µs PULSE WIDTH T J= 150 ° C 10 100 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100 3.0 I D = 14A 2.5 RDS(on) , Drain-to-Source On Resistance TJ = 150 °C I D, Drain-to-Source Current (A) 10 2.0 (Normalized) 1.5 TJ = 25 °C 1 1.0 0.5 0.1 4 6 8 10 V DS 50V = 20µs PULSE WIDTH 12 14 16 0.0 -60 -40 -20 0 20 40 60 80 100 V GS = 10V 120 140 160 V GS, Gate-to-Source Voltage (V) TJ , Junction Temperature ( ° C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature www.irf.com 3 IRFB13N50APbF 100000 VGS = 0V, f = 1 MHZ Ciss = C + C , C gs gd ds SHORTED Crss = C gd Coss = C + Cgd ds 12 I D = 14A 10000 10 VDS = 400V VDS = 250V VDS = 100V Ciss 1000 VGS , Gate-to-Source Voltage (V) C, Capacitance(pF) 7 Coss 100 5 10 Crss 2 1 1 10 100 1000 0 0 12 24 36 48 60 VDS, Drain-to-Source Voltage (V) QG, Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 100 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) I SD , Reverse Drain Current (A) TJ = 150 °C 10 ID, Drain-to-Source Current (A) 100 10 100µsec 1msec TJ = 25 °C 1 1 Tc = 25°C Tj = 150°C Single Pulse 10 100 10msec 0.1 0.2 0.5 0.8 V GS = 0 V 1.1 1.4 0.1 V SD,Source-to-Drain Voltage (V) 1000 10000 VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRFB13N50APbF 15 V DS VGS RG 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % RD 12 D.U.T. + -VDD I D , Drain Current (A) 9 6 Fig 10a. Switching Time Test Circuit 3 VDS 90% 0 25 50 75 100 125 150 TC , Case Temperature ( ° C) Fig 9. Maximum Drain Current vs. Case Temperature 10% VGS td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms 1 (Z thJC ) D = 0.50 0.1 0.20 0.10 Thermal Response 0.05 0.02 0.01 0.01 SINGLE PULSE (THERMAL RESPONSE) P DM t1 t2 Notes: 1. Duty factor D = 2. Peak T t1/ t 2 +TC 1 J = P DM x Z thJC 0.001 0.00001 0.0001 0.001 0.01 0.1 t 1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFB13N50APbF 1150 ID TOP 6.3A 8.9A 14A 920 BOTTOM EAS , Single Pulse Avalanche Energy (mJ) 15V 690 VDS L DRIVER 460 RG 20V D.U.T IAS + - VDD A 230 tp 0.01Ω Fig 12c. Unclamped Inductive Test Circuit 0 25 50 75 100 125 150 Starting Tj, Junction Temperature ( ° C) Fig 12a. Maximum Avalanche Energy vs. Drain Current tp V(BR)DSS I AS Fig 12d. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF QG VGS D.U.T. + V - DS QGS VG QGD VGS 3mA IG ID Current Sampling Resistors Charge Fig 13a. Gate Charge Test Circuit Fig 13b. Basic Gate Charge Waveform 6 www.irf.com IRFB13N50APbF Peak Diode Recovery dv/dt Test Circuit D.U.T + ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer ‚ - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test + VDD Driver Gate Drive P.W. Period D= P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt VDD Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFET® Power MOSFETs www.irf.com 7 IRFB13N50APbF TO-220AB Package Outline 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) Dimensions are shown in millimeters (inches) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 3 LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 21- GATE DRAIN 1- GATE 32- DRAINSOURCE 2- COLLECTOR 3- SOURCE 3- EMITTER 4 - DRAIN LEAD ASSIGNMENTS HEXFET 14.09 (.555) 13.47 (.530) 4- DRAIN 4.06 (.160) 3.55 (.140) 4- COLLECTOR 3X 3X 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) M BAM 3X 0.55 (.022) 0.46 (.018) 0.36 (.014) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 2.92 (.115) 2.64 (.104) 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMPL E : T HIS IS AN IR F 1010 LOT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB LY L INE "C" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y LOT CODE PAR T NU MB E R Note: "P" in assembly line position indicates "Lead-Free" DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/04 8 www.irf.com
IRFB13N50APBF 价格&库存

很抱歉,暂时无法提供与“IRFB13N50APBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货