PD - 94631A
SMPS MOSFET
IRFB16N60L
HEXFET® Power MOSFET Applications • Zero Voltage Switching SMPS VDSS RDS(on) typ. Trr typ. ID • Telecom and Server Power Supplies • Uninterruptible Power Supplies 385mΩ 600V 130ns 16A • Motor Control applications Features and Benefits • SuperFast body diode eliminates the need for external diodes in ZVS applications. • Lower Gate charge results in simpler drive requirements. • Enhanced dv/dt capabilities offer improved ruggedness. TO-220AB • Higher Gate voltage threshold offers improved noise immunity .
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V ID @ TC = 100°C Continuous Drain Current, VGS @ 10V Pulsed Drain Current IDM
Max.
16 10 60 310 2.5 ±30 11 -55 to + 150 300 (1.6mm from case ) 1.1(10)
Units
A W W/°C V V/ns °C N•m (lbf•in)
c
PD @TC = 25°C Power Dissipation VGS dv/dt TJ TSTG Linear Derating Factor Gate-to-Source Voltage
Peak Diode Recovery dv/dt Operating Junction and
e
Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw
Diode Characteristics
Symbol
IS ISM VSD trr Qrr IRRM ton
Parameter
Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)
Min. Typ. Max. Units
––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 130 240 450 5.8 16 A 60 1.5 200 360 670 8.7 V
Conditions
MOSFET symbol showing the integral reverse
G S D
Ãc
Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time
p-n junction diode. TJ = 25°C, IS = 16A, VGS = 0V
f
ns TJ = 25°C, IF = 16A TJ = 125°C, di/dt = 100A/µs
––– 1080 1620
nC TJ = 25°C, IS = 16A, VGS = 0V TJ = 125°C, di/dt = 100A/µs A TJ = 25°C
f f f
1
10/19/04
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRFB16N60L
Static @ TJ = 25°C (unless otherwise specified)
Symbol
V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS IGSS RG
Parameter
Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance
Min. Typ. Max. Units
600 ––– ––– 3.0 ––– ––– ––– ––– ––– ––– 0.39 385 ––– ––– ––– ––– ––– 0.79 ––– ––– 460 5.0 50 2.0 100 -100 ––– Ω V
Conditions
VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 9.0A V VDS = VGS, ID = 250µA µA mA nA VDS = 600V, VGS = 0V VDS = 480V, VGS = 0V, TJ = 125°C VGS = 30V VGS = -30V f = 1MHz, open drain
f
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss eff. Coss eff. (ER)
Parameter
Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance Effective Output Capacitance (Energy Related)
Min. Typ. Max. Units
8.3 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 20 44 28 5.5 2720 260 20 120 100 ––– 100 30 46 ––– ––– ––– ––– ––– ––– ––– ––– ––– pF ns nC S ID = 16A
Conditions
VDS = 50V, ID = 9.0A VDS = 480V VGS = 10V, See Fig. 7 & 15 VDD = 300V ID = 16A RG = 1.8Ω VGS = 10V, See Fig. 11a & 11b VGS = 0V VDS = 25V ƒ = 1.0MHz, See Fig. 5 VGS = 0V,VDS = 0V to 480V
f f
g
Avalanche Characteristics
Symbol
EAS IAR EAR Parameter Single Pulse Avalanche Energy. Avalanche Current
Ã
d
Typ. ––– ––– –––
Max. 310 16 31
Units mJ A mJ
Repetitive Avalanche Energy
Thermal Resistance
Symbol
RθJC RθJA
Parameter
Junction-to-Case
h
Typ.
––– –––
Max.
0.4 62
Units
°C/W
Junction-to-Ambient
h
Notes: Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 12) Starting TJ = 25°C, L = 2.5mH, RG = 25Ω, IAS = 16A.(See Figure 14a) ISD ≤ 16A, di/dt ≤ 650A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C.
Pulse width ≤ 300µs; duty cycle ≤ 2%.
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS . Coss eff.(ER) is a fixed capacitance that stores the same energy as Coss while VDS is rising from 0 to 80% VDSS . Rθ is measured at TJ approximately 90°C
2
www.irf.com
IRFB16N60L
1000
TOP VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V 5.0V
100
TOP VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V 5.0V
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
100
10
BOTTOM
10
BOTTOM
5.0V
1
1
0.1
5.0V
0.1
0.01
20µs PULSE WIDTH Tj = 25°C
0.001 0.1 1 10 100 0.01 0.1 1
20µs PULSE WIDTH Tj = 150°C
10 100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
3.0
RDS(on) , Drain-to-Source On Resistance
ID = 15A
2.5
ID, Drain-to-Source Current (Α)
100
VGS = 10V
(Normalized)
10
T J = 150°C
2.0
1.5
1
T J = 25°C
0.1
1.0
VDS = 50V 20µs PULSE WIDTH
0.01 4 6 8 10 12 14 16
0.5
0.0 -60 -40 -20 0 20 40 60 80 100 120 140 160
VGS , Gate-to-Source Voltage (V)
T J , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
www.irf.com
3
IRFB16N60L
100000 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = Cgd Coss = Cds + Cgd
25
10000
20
C, Capacitance(pF)
Ciss
Energy (µJ)
1000
15
Coss
100
10
Crss
10
5
1 1 10 100 1000
0 0 100 200 300 400 500 600 700
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typ. Output Capacitance Stored Energy vs. VDS
12.0 ID= 15A
VGS , Gate-to-Source Voltage (V)
100.00 VDS= 480V VDS= 300V VDS= 120V
ISD, Reverse Drain Current (A)
10.0
8.0
10.00
T J = 150°C
6.0
4.0
1.00
T J = 25°C
2.0
VGS = 0V 0.0 0 10 20 30 40 50 60 70 Q G Total Gate Charge (nC) 0.10 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Gate Charge vs. Gate-to-Source Voltage
Fig 8. Typical Source-Drain Diode Forward Voltage
4
www.irf.com
IRFB16N60L
1000 OPERATION IN THIS AREA LIMITED BY R DS(on)
18 16 14
ID, Drain Current (A)
10000
ID, Drain-to-Source Current (A)
100
12 10 8 6 4 2
10 100µsec
1 Tc = 25°C Tj = 150°C Single Pulse 0.1 1 10 100
1msec
10msec
0
1000
25
50
75
100
125
150
VDS, Drain-to-Source Voltage (V)
T C , Case Temperature (°C)
Fig 9. Maximum Safe Operating Area
Fig 10. Maximum Drain Current vs. Case Temperature
VDS VGS RG 10V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
RD
VDS 90%
D.U.T.
+
-VDD
10% VGS
td(on) tr t d(off) tf
Fig 11a. Switching Time Test Circuit
Fig 11b. Switching Time Waveforms
www.irf.com
5
IRFB16N60L
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20 0.10 0.05
P DM
0.01
0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty factor D = 2. Peak T t1/ t 2
t1 t2
J = P DM x Z thJC
+T C
0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
Fig 12. Maximum Effective Transient Thermal Impedance, Junction-to-Case
5.0
VGS(th) Gate threshold Voltage (V)
4.5
4.0
3.5
ID = 250µA
3.0
2.5
2.0 -75 -50 -25 0 25 50 75 100 125 150 175
T J , Temperature ( °C )
Fig 13. Threshold Voltage vs. Temperature
6
www.irf.com
IRFB16N60L
600
EAS , Single Pulse Avalanche Energy (mJ)
500
ID 7.2A 10A BOTTOM 16A TOP
400
300
200
100
0 25 50 75 100 125 150
Starting T J , Junction Temperature (°C)
Fig 14a. Maximum Avalanche Energy vs. Drain Current
15V
V(BR)DSS
VDS L
DRIVER
tp
RG
20V
D.U.T
IAS tp
+ - VDD
A
0.01Ω
I AS
Fig 14b. Unclamped Inductive Test Circuit
Current Regulator Same Type as D.U.T.
Fig 14c. Unclamped Inductive Waveforms
50KΩ 12V .2µF .3µF
QG
VGS V
D.U.T. + V - DS
QGS VG
QGD
VGS
3mA
IG
ID
Current Sampling Resistors
Charge
Fig 15a. Gate Charge Test Circuit
Fig 15b. Basic Gate Charge Waveform
www.irf.com
7
IRFB16N60L
Peak Diode Recovery dv/dt Test Circuit
D.U.T
+
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
-
+
RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
+ VDD
Driver Gate Drive P.W. Period D=
P.W. Period VGS=10V
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
VDD
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices Fig 16. For N-Channel HEXFET® Power MOSFETs
8
www.irf.com
IRFB16N60L
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
2.87 (.113) 2.62 (.103)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
LEAD ASSIGNMENTS
LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 21- GATE DRAIN 1- GATE 32- DRAINSOURCE 2- COLLECTOR 3- SOURCE 3- EMITTER 4 - DRAIN
HEXFET
14.09 (.555) 13.47 (.530)
4- DRAIN
4.06 (.160) 3.55 (.140)
4- COLLECTOR
3X 3X 1.40 (.055) 1.15 (.045)
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
2.92 (.115) 2.64 (.104)
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMP LE : T H IS IS AN IR F 1010 LOT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB LY LOT CODE PAR T NU MB E R
Note: "P" in assembly line position indicates "Lead-Free"
DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C
TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/04
www.irf.com
9