PD - 96201
IRFB3207ZGPbF
Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits
HEXFET® Power MOSFET
D
G S
VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited)
D
75V 3.3m 4.1m 170A 120A
: :
c
Benefits l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free l Halogen-Free
G
G
D
S
TO-220AB IRFB3207ZGPbF
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG
Parameter
Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw
Max.
d
f
170 120 120 670 300 2.0 ± 20 16 -55 to + 175 300 10lbf in (1.1N m) 170 See Fig. 14, 15, 22a, 22b
Units
A
W W/°C V V/ns
°C
x
x
Avalanche Characteristics
EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy
Ãd
e
d
mJ A mJ
Thermal Resistance
Symbol
RθJC RθCS RθJA Junction-to-Case Case-to-Sink, Flat Greased Surface , TO-220 Junction-to-Ambient, TO-220
j
Parameter
Typ.
––– 0.50 –––
Max.
0.50 ––– 62
Units
°C/W
www.irf.com
1
12/05/08
IRFB3207ZGPbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) RG(int) IDSS IGSS
Parameter
Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Internal Gate Resistance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage
Min. Typ. Max. Units
75 ––– ––– 2.0
–––
Conditions
––– 0.091 3.3 ––– 0.8 ––– ––– ––– –––
––– ––– 4.1 4.0 ––– 20 250 100 -100
V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mA mΩ VGS = 10V, ID = 75A V VDS = VGS, ID = 150µA
g
d
Ω
––– ––– ––– –––
µA nA
VDS = 75V, VGS = 0V VDS = 75V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR)
Parameter
Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
Min. Typ. Max. Units
280 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 120 27 33 87 20 68 55 68 6920 600 270 770 960 ––– 170 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC
Conditions
VDS = 50V, ID = 75A ID = 75A VDS = 38V VGS = 10V ID = 75A, VDS =0V, VGS = 10V VDD = 49V ID = 75A RG = 2.7Ω VGS = 10V VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 60V VGS = 0V, VDS = 0V to 60V
g
ns
g
Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related)
h
iÃ
pF
ià h
D
Diode Characteristics
Symbol
IS ISM VSD trr Qrr IRRM ton
Parameter
Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time
Min. Typ. Max. Units
––– ––– ––– 170 –––
Conditions
MOSFET symbol showing the integral reverse
Ãd
670
A
G S
Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time
––– ––– 1.3 V ––– 36 54 ns ––– 41 62 ––– 50 75 nC TJ = 125°C ––– 67 100 ––– 2.4 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
p-n junction diode. TJ = 25°C, IS = 75A, VGS = 0V TJ = 25°C VR = 64V, TJ = 125°C IF = 75A di/dt = 100A/µs TJ = 25°C
g
g
Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.033mH RG = 25 Ω, IAS = 102A, VGS =10V. Part not recommended for use above this value.
ISD ≤ 75A, di/dt ≤ 1730A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
Coss eff. (ER) is a fixed capacitance that gives the same energy as Rθ is measured at TJ approximately 90°C.
Coss while VDS is rising from 0 to 80% VDSS.
2
www.irf.com
IRFB3207ZGPbF
1000
TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V
1000
TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V
ID, Drain-to-Source Current (A)
BOTTOM
ID, Drain-to-Source Current (A)
BOTTOM
100 4.5V
100
4.5V
≤60µs PULSE WIDTH
Tj = 25°C 10 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) 10 0.1 1
≤60µs PULSE WIDTH
Tj = 175°C 10
100
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
1000
Fig 2. Typical Output Characteristics
2.5
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID, Drain-to-Source Current (A)
ID = 75A VGS = 10V 2.0
100
T J = 175°C T J = 25°C
10
1.5
1 VDS = 25V ≤60µs PULSE WIDTH 0.1 2 3 4 5 6 7
1.0
0.5 -60 -40 -20 0 20 40 60 80 100 120140 160180 T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
100000
VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd
Fig 4. Normalized On-Resistance vs. Temperature
12.0 ID= 75A
VGS, Gate-to-Source Voltage (V)
10.0 8.0 6.0 4.0 2.0 0.0
C, Capacitance (pF)
VDS= 60V VDS= 38V VDS= 15V
10000
Ciss
Coss 1000 Crss
100 1 10 VDS, Drain-to-Source Voltage (V) 100
0
20
40
60
80
100
120
140
QG, Total Gate Charge (nC)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
www.irf.com
3
IRFB3207ZGPbF
1000 10000 OPERATION IN THIS AREA LIMITED BY R DS(on)
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
T J = 175°C
1000
100
10msec
100µsec
10
T J = 25°C
1msec
10
1 VGS = 0V 0.1 0.0 0.5 1.0 1.5 2.0 2.5 VSD, Source-to-Drain Voltage (V)
DC
1
Tc = 25°C Tj = 175°C Single Pulse 1 10 VDS, Drain-to-Source Voltage (V) 100
0.1
Fig 7. Typical Source-Drain Diode Forward Voltage
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
180 160 140
ID, Drain Current (A)
Fig 8. Maximum Safe Operating Area
100 Id = 5mA 95 90 85 80 75 70 -60 -40 -20 0 20 40 60 80 100 120140 160180 T J , Temperature ( °C )
Limited By Package
120 100 80 60 40 20 0 25 50 75 100 125 150 175 T C , Case Temperature (°C)
Fig 9. Maximum Drain Current vs. Case Temperature
2.5
Fig 10. Drain-to-Source Breakdown Voltage
700
EAS , Single Pulse Avalanche Energy (mJ)
2.0
600 500 400 300 200 100 0
ID 17A 30A BOTTOM 102A TOP
Energy (µJ)
1.5
1.0
0.5
0.0 -10 0 10 20 30 40 50 60 70 80
25
50
75
100
125
150
175
VDS, Drain-to-Source Voltage (V)
Starting T J , Junction Temperature (°C)
4
Fig 11. Typical COSS Stored Energy
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRFB3207ZGPbF
1
Thermal Response ( Z thJC )
D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE )
τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 τC τ τ3
Ri (°C/W) τi (sec) 0.1049 0.000099 0.2469 0.1484 0.001345 0.008469
τ1
τ2
Ci= τi /Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1
0.001 1E-006
1E-005
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Duty Cycle = Single Pulse
Avalanche Current (A)
100
0.01 0.05
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse)
10
0.10
1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 tav (sec) 1.0E-03 1.0E-02 1.0E-01
Fig 14. Typical Avalanche Current vs.Pulsewidth
200 180
EAR , Avalanche Energy (mJ)
160 140 120 100 80 60 40 20 0 25 50
TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 102A
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFB3207ZGPbF
4.5
VGS(th), Gate threshold Voltage (V)
20 IF = 30A V R = 64V 15 TJ = 25°C TJ = 125°C
4.0 3.5 3.0
IRR (A)
2.5 2.0 1.5 1.0 0.5 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) ID = 150µA ID = 250µA ID = 1.0mA ID = 1.0A
10
5
0 0 200 400 600 800 1000 diF /dt (A/µs)
Fig 16. Threshold Voltage vs. Temperature
20 IF = 45A V R = 64V 15 TJ = 25°C TJ = 125°C
QRR (A)
Fig. 17 - Typical Recovery Current vs. dif/dt
340 IF = 30A V R = 64V 260 TJ = 25°C TJ = 125°C
IRR (A)
10
180
5
100
0 0 200 400 600 800 1000 diF /dt (A/µs)
20 0 200 400 600 800 1000 diF /dt (A/µs)
Fig. 18 - Typical Recovery Current vs. dif/dt
340 IF = 45A V R = 64V 260 TJ = 25°C TJ = 125°C
Fig. 19 - Typical Stored Charge vs. dif/dt
QRR (A)
180
100
20 0 200 400 600 800 1000 diF /dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFB3207ZGPbF
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
• • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage
Body Diode
Forward Drop
Inductor Curent Inductor Current
Ripple ≤ 5% ISD
* VGS = 5V for Logic Level Devices Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
15V
tp
DRIVER
VDS
L
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
A
0.01Ω
I AS
Fig 21a. Unclamped Inductive Test Circuit
LD VDS
Fig 21b. Unclamped Inductive Waveforms
+
VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1%
90%
VDS
10%
VGS
td(on) tr td(off) tf
Fig 22a. Switching Time Test Circuit
Fig 22b. Switching Time Waveforms
Id Vds Vgs
L
0
DUT 1K
VCC
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
www.irf.com
Fig 23a. Gate Charge Test Circuit
Fig 23b. Gate Charge Waveform
7
IRFB3207ZGPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSA7#" BQ7A Ir)ÃÅBÅÃssvÃvÃh
Ãir
à vqvphrÃÅChytrÃÃA
rrÅ Ir)ÃÅQÅÃvÃhriyÃyvrÃvv vqvphrÃÅGrhqÃÃA
rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@) `2G6TUÃ9DBDUÃPA 86G@I96SÃ`@6S XX2XPSFÃX@@F Y2A68UPS`Ã8P9@
TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
8
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 12/2008
www.irf.com