PD - 96211
IRFB3306GPbF
HEXFET® Power MOSFET
Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits G Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free l Halogen-Free
D
VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited)
D
60V 3.3m: 4.2m: 160A 120A
c
S
G
D
S
TO-220AB IRFB3306GPbF G D S
Gate
Drain Max.
Source Units
A
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG
Parameter
Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw
d
f
160 110 120 620 230 1.5 ± 20 14 -55 to + 175 300 10lbf in (1.1N m) 184 See Fig. 14, 15, 22a, 22b,
W W/°C V V/ns
°C
x
x
Avalanche Characteristics
EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy
Ãd
e
d
mJ A mJ
Thermal Resistance
Symbol
RθJC RθCS RθJA Junction-to-Case Case-to-Sink, Flat Greased Surface , TO-220 Junction-to-Ambient, TO-220
j
Parameter
Typ.
––– 0.50 –––
Max.
0.65 ––– 62
Units
°C/W
www.irf.com
1
01/06/09
IRFB3306GPbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
V(BR)DSS RDS(on) VGS(th) IDSS IGSS RG
Parameter
Drain-to-Source Breakdown Voltage Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance
Min. Typ. Max. Units
60 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– 0.07 3.3 ––– ––– ––– ––– ––– 0.7 ––– ––– 4.2 4.0 20 250 100 -100 ––– Ω nA V
Conditions
VGS = 0V, ID = 250µA
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
V/°C Reference to 25°C, ID = 5mA mΩ VGS = 10V, ID = 75A V µA VDS = 60V, VGS = 0V VDS = VGS, ID = 150µA
g
d
VDS = 48V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss
Parameter
Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
Min. Typ. Max. Units
230 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 85 20 26 59 15 76 40 77 4520 500 250 720 880 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– pF ns ––– 120 ––– S nC ID = 75A VDS =30V VGS = 10V VDD = 30V ID = 75A RG = 2.7Ω VGS = 10V VGS = 0V VDS = 50V
Conditions
VDS = 50V, ID = 75A
ID = 75A, VDS =0V, VGS = 10V
g
g i, See Fig. 11 = 0V to 48V h
Conditions
D
ƒ = 1.0MHz, See Fig. 5 VGS = 0V, VDS
Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– Coss eff. (TR) Effective Output Capacitance (Time Related) –––
h
VGS = 0V, VDS = 0V to 48V
Diode Characteristics
Symbol
IS ISM VSD trr Qrr IRRM ton
Parameter
Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time
Min. Typ. Max. Units
––– ––– ––– ––– ––– ––– ––– ––– ––– 160 ––– ––– 31 35 34 45 1.9 ––– A nC
A A V ns
MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 75A, VGS = 0V TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C VR = 51V,
G
Ãd
620 1.3
S
g g
IF = 75A di/dt = 100A/µs
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.04mH RG = 25 Ω, IAS = 96A, VGS =10V. Part not recommended for use above this value.
ISD ≤ 75A, di/dt ≤ 1400A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
Coss eff. (ER) is a fixed capacitance that gives the same energy as Rθ is measured at TJ approximately 90°C
Coss while VDS is rising from 0 to 80% VDSS.
2
www.irf.com
IRFB3306GPbF
1000
TOP
1000
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
BOTTOM
VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V
TOP
BOTTOM
VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V
100
100
4.5V
4.5V ≤ 60µs PULSE WIDTH Tj = 25°C
10 0.1 1 10 100
≤ 60µs PULSE WIDTH Tj = 175°C
10 0.1 1 10 100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
1000
Fig 2. Typical Output Characteristics
2.5
100
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID, Drain-to-Source Current(Α)
ID = 75A VGS = 10V
2.0
TJ = 175°C
10
1.5
TJ = 25°C
1
1.0
VDS = 25V
0.1 2.0 3.0 4.0 5.0
≤ 60µs PULSE WIDTH
6.0 7.0 8.0
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
VGS, Gate-to-Source Voltage (V)
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
8000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd
Fig 4. Normalized On-Resistance vs. Temperature
20
VGS, Gate-to-Source Voltage (V)
ID= 75A VDS = 48V VDS= 30V VDS= 12V
16
C, Capacitance (pF)
6000
Ciss
4000
12
8
2000
4
Coss Crss
0 1 10 100
0 0 20 40 60 80 100 120 140 QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
www.irf.com
3
IRFB3306GPbF
1000
10000
OPERATION IN THIS AREA LIMITED BY R DS (on)
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
1000 1msec 100µsec
TJ = 175°C
100
10
TJ = 25°C
10
10msec
1
1
VGS = 0V
0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Tc = 25°C Tj = 175°C Single Pulse 0.1 1
DC
0.1 10 100
VSD, Source-to-Drain Voltage (V)
VDS, Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
180 160 140
ID, Drain Current (A)
V(BR)DSS , Drain-to-Source Breakdown Voltage
80
Fig 8. Maximum Safe Operating Area
Limited By Package
ID = 5mA
120 100 80 60 40 20 0 25 50 75 100 125 150 175 T C , Case Temperature (°C)
70
60
50 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 9. Maximum Drain Current vs. Case Temperature
1.5
Fig 10. Drain-to-Source Breakdown Voltage
800
EAS, Single Pulse Avalanche Energy (mJ)
600
ID 13A 18A BOTTOM 96A
TOP
1.0
Energy (µJ)
400
0.5
200
0.0 0 10 20 30 40 50 60
0 25 50 75 100 125 150 175
VDS, Drain-to-Source Voltage (V)
Starting TJ, Junction Temperature (°C)
Fig 11. Typical COSS Stored Energy
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
4
www.irf.com
IRFB3306GPbF
1
D = 0.50
Thermal Response ( ZthJC )
0.1
0.20 0.10 0.05 0.02
0.01
0.01
τJ
R1 R1 τJ τ1 τ2
R2 R2 τC
Ri (°C/W) 0.249761
τι (sec)
0.00028
τ1
τ2
0.001
SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi /Ri C
0.400239 0.005548
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.0001 0.001 0.01 0.1
0.0001 1E-006 1E-005
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
100
Duty Cycle = Single Pulse 0.01
Avalanche Current (A)
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse)
0.05
10
0.10
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C.
1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
200
EAR , Avalanche Energy (mJ)
160
TOP Single Pulse BOTTOM 1% Duty Cycle ID = 96A
120
80
40
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
175
0 25 50 75 100 125 150
Starting TJ , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFB3306GPbF
4.5
16
VGS(th) Gate threshold Voltage (V)
4.0 3.5 3.0 2.5 2.0 1.5 1.0 -75 -50 -25 0 25 50 75
ID = 1.0A ID = 1.0mA ID = 250µA ID = 150µA
IRRM - (A)
12
8
4
IF = 30A VR = 51V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000
0
100 125 150 175
TJ , Temperature ( °C )
dif / dt - (A / µs)
Fig 16. Threshold Voltage Vs. Temperature
16
Fig. 17 - Typical Recovery Current vs. dif/dt
350 300
12
250
QRR - (nC)
IF = 45A VR = 51V TJ = 125°C TJ = 25°C
IRRM - (A)
200 150 100 50 0 IF = 30A VR = 51V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000
8
4
0
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
dif / dt - (A / µs)
Fig. 18 - Typical Recovery Current vs. dif/dt
350 300 250
Fig. 19 - Typical Stored Charge vs. dif/dt
QRR - (nC)
200 150 100 50 0 IF = 45A VR = 51V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFB3306GPbF
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
• • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage
Body Diode
Forward Drop
Inductor Curent Inductor Current
Ripple ≤ 5% ISD
* VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
15V
tp
DRIVER
VDS
L
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
A
0.01Ω
I AS
Fig 22a. Unclamped Inductive Test Circuit
LD VDS
Fig 22b. Unclamped Inductive Waveforms
+
VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1%
90%
VDS
10%
VGS
td(on) tr td(off) tf
Fig 23a. Switching Time Test Circuit
Current Regulator Same Type as D.U.T.
Fig 23b. Switching Time Waveforms
Id Vds Vgs
50KΩ 12V .2µF .3µF
D.U.T. VGS
3mA
+ V - DS
Vgs(th)
IG
ID
Current Sampling Resistors
Qgs1 Qgs2
Qgd
Qgodr
www.irf.com
Fig 24a. Gate Charge Test Circuit
Fig 24b. Gate Charge Waveform
7
IRFB3306GPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSA7#" BQ7A Ir)ÃÅBÅÃssvÃvÃh
Ãir
à vqvphrÃÅChytrÃÃA
rrÅ Ir)ÃÅQÅÃvÃhriyÃyvrÃvv vqvphrÃÅGrhqÃÃA
rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@) `2G6TUÃ9DBDUÃPA 86G@I96SÃ`@6S XX2XPSFÃX@@F Y2A68UPS`Ã8P9@
TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.01/2009
8
www.irf.com