0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFB3306GPBF

IRFB3306GPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRFB3306GPBF - HEXFET Power MOSFET - International Rectifier

  • 详情介绍
  • 数据手册
  • 价格&库存
IRFB3306GPBF 数据手册
PD - 96211 IRFB3306GPbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits G Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free l Halogen-Free D VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited) D 60V 3.3m: 4.2m: 160A 120A c S G D S TO-220AB IRFB3306GPbF G D S Gate Drain Max. Source Units A Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw d f 160 110 120 620 230 1.5 ± 20 14 -55 to + 175 300 10lbf in (1.1N m) 184 See Fig. 14, 15, 22a, 22b, ™ ™ W W/°C V V/ns °C x x Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Ãd e d mJ A mJ Thermal Resistance Symbol RθJC RθCS RθJA Junction-to-Case Case-to-Sink, Flat Greased Surface , TO-220 Junction-to-Ambient, TO-220 j Parameter Typ. ––– 0.50 ––– Max. 0.65 ––– 62 Units °C/W www.irf.com 1 01/06/09 IRFB3306GPbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS RDS(on) VGS(th) IDSS IGSS RG Parameter Drain-to-Source Breakdown Voltage Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance Min. Typ. Max. Units 60 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– 0.07 3.3 ––– ––– ––– ––– ––– 0.7 ––– ––– 4.2 4.0 20 250 100 -100 ––– Ω nA V Conditions VGS = 0V, ID = 250µA ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient V/°C Reference to 25°C, ID = 5mA mΩ VGS = 10V, ID = 75A V µA VDS = 60V, VGS = 0V VDS = VGS, ID = 150µA g d VDS = 48V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units 230 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 85 20 26 59 15 76 40 77 4520 500 250 720 880 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– pF ns ––– 120 ––– S nC ID = 75A VDS =30V VGS = 10V VDD = 30V ID = 75A RG = 2.7Ω VGS = 10V VGS = 0V VDS = 50V Conditions VDS = 50V, ID = 75A ID = 75A, VDS =0V, VGS = 10V g g i, See Fig. 11 = 0V to 48V h Conditions D ƒ = 1.0MHz, See Fig. 5 VGS = 0V, VDS Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– Coss eff. (TR) Effective Output Capacitance (Time Related) ––– h VGS = 0V, VDS = 0V to 48V Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– ––– 160 ––– ––– 31 35 34 45 1.9 ––– A nC ™ A A V ns MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 75A, VGS = 0V TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C VR = 51V, G Ãd 620 1.3 S g g IF = 75A di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes:  Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. ‚ Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.04mH RG = 25 Ω, IAS = 96A, VGS =10V. Part not recommended for use above this value. „ ISD ≤ 75A, di/dt ≤ 1400A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. … Pulse width ≤ 400µs; duty cycle ≤ 2%. † Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . ‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as ˆ Rθ is measured at TJ approximately 90°C Coss while VDS is rising from 0 to 80% VDSS. 2 www.irf.com IRFB3306GPbF 1000 TOP 1000 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) BOTTOM VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V TOP BOTTOM VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V 100 100 4.5V 4.5V ≤ 60µs PULSE WIDTH Tj = 25°C 10 0.1 1 10 100 ≤ 60µs PULSE WIDTH Tj = 175°C 10 0.1 1 10 100 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 Fig 2. Typical Output Characteristics 2.5 100 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current(Α) ID = 75A VGS = 10V 2.0 TJ = 175°C 10 1.5 TJ = 25°C 1 1.0 VDS = 25V 0.1 2.0 3.0 4.0 5.0 ≤ 60µs PULSE WIDTH 6.0 7.0 8.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 VGS, Gate-to-Source Voltage (V) TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics 8000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd Fig 4. Normalized On-Resistance vs. Temperature 20 VGS, Gate-to-Source Voltage (V) ID= 75A VDS = 48V VDS= 30V VDS= 12V 16 C, Capacitance (pF) 6000 Ciss 4000 12 8 2000 4 Coss Crss 0 1 10 100 0 0 20 40 60 80 100 120 140 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRFB3306GPbF 1000 10000 OPERATION IN THIS AREA LIMITED BY R DS (on) ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 1000 1msec 100µsec TJ = 175°C 100 10 TJ = 25°C 10 10msec 1 1 VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 DC 0.1 10 100 VSD, Source-to-Drain Voltage (V) VDS, Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 180 160 140 ID, Drain Current (A) V(BR)DSS , Drain-to-Source Breakdown Voltage 80 Fig 8. Maximum Safe Operating Area Limited By Package ID = 5mA 120 100 80 60 40 20 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) 70 60 50 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature 1.5 Fig 10. Drain-to-Source Breakdown Voltage 800 EAS, Single Pulse Avalanche Energy (mJ) 600 ID 13A 18A BOTTOM 96A TOP 1.0 Energy (µJ) 400 0.5 200 0.0 0 10 20 30 40 50 60 0 25 50 75 100 125 150 175 VDS, Drain-to-Source Voltage (V) Starting TJ, Junction Temperature (°C) Fig 11. Typical COSS Stored Energy Fig 12. Maximum Avalanche Energy Vs. DrainCurrent 4 www.irf.com IRFB3306GPbF 1 D = 0.50 Thermal Response ( ZthJC ) 0.1 0.20 0.10 0.05 0.02 0.01 0.01 τJ R1 R1 τJ τ1 τ2 R2 R2 τC Ri (°C/W) 0.249761 τι (sec) 0.00028 τ1 τ2 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi /Ri C 0.400239 0.005548 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 0.0001 1E-006 1E-005 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Duty Cycle = Single Pulse 0.01 Avalanche Current (A) Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) 0.05 10 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth 200 EAR , Avalanche Energy (mJ) 160 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 96A 120 80 40 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) 175 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFB3306GPbF 4.5 16 VGS(th) Gate threshold Voltage (V) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 -75 -50 -25 0 25 50 75 ID = 1.0A ID = 1.0mA ID = 250µA ID = 150µA IRRM - (A) 12 8 4 IF = 30A VR = 51V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 0 100 125 150 175 TJ , Temperature ( °C ) dif / dt - (A / µs) Fig 16. Threshold Voltage Vs. Temperature 16 Fig. 17 - Typical Recovery Current vs. dif/dt 350 300 12 250 QRR - (nC) IF = 45A VR = 51V TJ = 125°C TJ = 25°C IRRM - (A) 200 150 100 50 0 IF = 30A VR = 51V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 8 4 0 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / µs) dif / dt - (A / µs) Fig. 18 - Typical Recovery Current vs. dif/dt 350 300 250 Fig. 19 - Typical Stored Charge vs. dif/dt QRR - (nC) 200 150 100 50 0 IF = 45A VR = 51V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFB3306GPbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit LD VDS Fig 22b. Unclamped Inductive Waveforms + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% 90% VDS 10% VGS td(on) tr td(off) tf Fig 23a. Switching Time Test Circuit Current Regulator Same Type as D.U.T. Fig 23b. Switching Time Waveforms Id Vds Vgs 50KΩ 12V .2µF .3µF D.U.T. VGS 3mA + V - DS Vgs(th) IG ID Current Sampling Resistors Qgs1 Qgs2 Qgd Qgodr www.irf.com Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform 7 IRFB3306GPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSA7#" BQ7A I‚‡r)ÃÅBÅƈssv‘ÃvÃƒh…‡Ãˆ€ir…à vqvph‡r†ÃÅChy‚trÃÃA…rrÅ I‚‡r)ÃÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚ vqvph‡r†ÃÅGrhqÃÃA…rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@) `2G6TUÃ9DBDUÃPA 86G@I96SÃ`@6S XX2XPSFÃX@@F Y2A68UPS`Ã8P9@ TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.01/2009 8 www.irf.com
IRFB3306GPBF
1. 物料型号: - 型号为IRFB3306GPbF,由International IOR Rectifier生产。

2. 器件简介: - IRFB3306GPbF是一款N沟道 HEXFET®功率MOSFET,适用于高效率同步整流、不间断电源、高速电源开关以及硬开关和高频电路。

3. 引脚分配: - G:栅极(Gate) - D:漏极(Drain) - S:源极(Source)

4. 参数特性: - VDss:60V - Rps(on):典型值3.3mΩ,最大值4.2mΩ - ID(硅片限制):160A - ID(封装限制):120A

5. 功能详解: - 提升门极、雪崩和动态dV/dt的坚固性,完全表征的电容和雪崩SOA,增强的体二极管dV/dt和dI/dt能力,无铅和无卤素。

6. 应用信息: - 应用于高效率同步整流、不间断电源、高速电源开关以及硬开关和高频电路。

7. 封装信息: - 封装为TO-220AB,提供了详细的尺寸信息,包括最小值、最大值、英寸和毫米的对应尺寸。
IRFB3306GPBF 价格&库存

很抱歉,暂时无法提供与“IRFB3306GPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货
IRFB3306GPBF
  •  国内价格
  • 1+2.472

库存:50