0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFB3307ZGPBF

IRFB3307ZGPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRFB3307ZGPBF - HEXFETPower MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRFB3307ZGPBF 数据手册
PD - 96212 Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits G IRFB3307ZGPbF HEXFET® Power MOSFET D Benefits l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free l Halogen-Free S VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited) D 75V 4.6m 5.8m 120A 120A : : c G D S TO-220AB IRFB3307ZGPbF G D S Gate Drain Max. Source Units A Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw d f 120 84 120 480 230 1.5 ± 20 6.7 -55 to + 175 300 10lbf in (1.1N m) 140 See Fig. 14, 15, 22a, 22b ™ W W/°C V V/ns °C x x Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Ãd e d mJ A mJ Thermal Resistance Symbol RθJC RθCS RθJA Junction-to-Case Case-to-Sink, Flat Greased Surface , TO-220 Junction-to-Ambient, TO-220 j Parameter Typ. ––– 0.50 ––– Max. 0.65 ––– 62 Units °C/W www.irf.com 1 01/06/09 IRFB3307ZGPbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) RG(int) IDSS IGSS Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Internal Gate Resistance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units 75 ––– ––– 2.0 ––– Conditions ––– 0.094 4.6 ––– 0.70 ––– ––– ––– ––– ––– ––– 5.8 4.0 ––– 20 250 100 -100 V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mA mΩ VGS = 10V, ID = 75A V VDS = VGS, ID = 150µA g d Ω ––– ––– ––– ––– µA nA VDS = 75V, VGS = 0V VDS = 75V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units 320 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 79 19 24 55 15 64 38 65 4750 420 190 440 410 ––– 110 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Conditions VDS = 50V, ID = 75A ID = 75A VDS = 38V VGS = 10V ID = 75A, VDS =0V, VGS = 10V VDD = 49V ID = 75A RG = 2.6Ω VGS = 10V VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 60V VGS = 0V, VDS = 0V to 60V g ns g Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) h i pF i h Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Min. Typ. Max. Units ––– ––– ––– 120 ––– ™ Conditions MOSFET symbol D Ãdi 480 A showing the integral reverse G Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 75A, VGS = 0V VR = 64V, ––– 33 50 ns TJ = 25°C TJ = 125°C IF = 75A ––– 39 59 di/dt = 100A/µs ––– 42 63 nC TJ = 25°C TJ = 125°C ––– 56 84 ––– 2.2 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) g g Notes:  Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. ‚ Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.050mH RG = 25 Ω, IAS = 75A, VGS =10V. Part not recommended for use above this value. „ ISD ≤ 75A, di/dt ≤ 1570A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. … Pulse width ≤ 400µs; duty cycle ≤ 2%. † Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . ‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as ˆ Rθ is measured at TJ approximately 90°C. Coss while VDS is rising from 0 to 80% VDSS. 2 www.irf.com IRFB3307ZGPbF 1000 TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V 1000 TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V ID, Drain-to-Source Current (A) 100 BOTTOM ID, Drain-to-Source Current (A) 100 BOTTOM 4.5V 4.5V 10 10 ≤60µs PULSE WIDTH Tj = 25°C 1 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) 1 0.1 1 ≤60µs PULSE WIDTH Tj = 175°C 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 RDS(on) , Drain-to-Source On Resistance (Normalized) Fig 2. Typical Output Characteristics 2.5 ID = 72A 2.0 VGS = 10V ID, Drain-to-Source Current (A) 100 T J = 175°C 10 T J = 25°C 1.5 1 VDS = 25V ≤60µs PULSE WIDTH 0.1 2 3 4 5 6 7 8 1.0 0.5 -60 -40 -20 0 20 40 60 80 100 120140160 180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 100000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd Fig 4. Normalized On-Resistance vs. Temperature 12.0 ID= 72A VGS, Gate-to-Source Voltage (V) 10.0 8.0 6.0 4.0 2.0 0.0 C, Capacitance (pF) VDS= 60V VDS= 38V VDS= 15V 10000 Ciss 1000 Coss Crss 100 1 10 VDS, Drain-to-Source Voltage (V) 100 0 10 20 30 40 50 60 70 80 90 QG, Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRFB3307ZGPbF 1000 10000 OPERATION IN THIS AREA LIMITED BY R DS(on) ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 T J = 175°C 1000 100 100µsec 10 T J = 25°C 1msec 10 10msec 1 VGS = 0V 0.1 0.0 0.5 1.0 1.5 2.0 VSD, Source-to-Drain Voltage (V) DC 1 Tc = 25°C Tj = 175°C Single Pulse 1 10 VDS, Drain-to-Source Voltage (V) 100 0.1 Fig 7. Typical Source-Drain Diode Forward Voltage V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 120 100 ID, Drain Current (A) Fig 8. Maximum Safe Operating Area 100 Id = 5mA 95 90 85 80 75 70 65 -60 -40 -20 0 20 40 60 80 100 120140 160180 T J , Temperature ( °C ) 80 60 40 20 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature 1.2 Fig 10. Drain-to-Source Breakdown Voltage 600 EAS , Single Pulse Avalanche Energy (mJ) 1.0 0.8 500 400 300 200 100 0 ID 15A 26A BOTTOM 75A TOP Energy (µJ) 0.6 0.4 0.2 0.0 20 30 40 50 60 70 80 25 50 75 100 125 150 175 VDS, Drain-to-Source Voltage (V) Starting T J , Junction Temperature (°C) 4 Fig 11. Typical COSS Stored Energy Fig 12. Maximum Avalanche Energy vs. DrainCurrent www.irf.com IRFB3307ZGPbF 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 Thermal Response ( Z thJC ) 0.01 τ1 τ2 Ri (°C/W) τi (sec) 0.1164 0.000088 0.3009 0.001312 0.2313 0.009191 Ci= τi /Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 1E-005 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 0.01 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) 0.05 10 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 tav (sec) 1.0E-03 1.0E-02 1.0E-01 Fig 14. Typical Avalanche Current vs.Pulsewidth 150 125 100 75 50 25 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 75A Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com EAR , Avalanche Energy (mJ) 5 IRFB3307ZGPbF 4.5 VGS(th), Gate threshold Voltage (V) 20 IF = 48A V R = 64V 15 TJ = 25°C TJ = 125°C 4.0 3.5 3.0 IRR (A) 2.5 2.0 1.5 1.0 0.5 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) ID = 150µA ID = 250µA ID = 1.0mA ID = 1.0A 10 5 0 0 200 400 600 800 1000 diF /dt (A/µs) Fig 16. Threshold Voltage vs. Temperature 20 IF = 72A V R = 64V 15 TJ = 25°C TJ = 125°C QRR (A) Fig. 17 - Typical Recovery Current vs. dif/dt 420 IF = 48A V R = 64V TJ = 25°C TJ = 125°C 340 IRR (A) 260 10 180 5 100 0 0 200 400 600 800 1000 diF /dt (A/µs) 20 0 200 400 600 800 1000 diF /dt (A/µs) Fig. 18 - Typical Recovery Current vs. dif/dt 420 IF = 72A V R = 64V TJ = 25°C TJ = 125°C Fig. 19 - Typical Stored Charge vs. dif/dt 340 QRR (A) 260 180 100 20 0 200 400 600 800 1000 diF /dt (A/µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFB3307ZGPbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01Ω I AS Fig 21a. Unclamped Inductive Test Circuit LD VDS Fig 21b. Unclamped Inductive Waveforms + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% 90% VDS 10% VGS td(on) tr td(off) tf Fig 22a. Switching Time Test Circuit Fig 22b. Switching Time Waveforms Id Vds Vgs L 0 DUT 1K VCC Vgs(th) Qgs1 Qgs2 Qgd Qgodr www.irf.com Fig 23a. Gate Charge Test Circuit Fig 23b. Gate Charge Waveform 7 IRFB3307ZGPbF Dimensions are shown in millimeters (inches) TO-220AB Package Outline TO-220AB Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSA7#" BQ7A I‚‡r)ÃÅBÅƈssv‘ÃvÃƒh…‡Ãˆ€ir…à vqvph‡r†ÃÅChy‚trÃÃA…rrÅ I‚‡r)ÃÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚ vqvph‡r†ÃÅGrhqÃÃA…rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@) `2G6TUÃ9DBDUÃPA 86G@I96SÃ`@6S XX2XPSFÃX@@F Y2A68UPS`Ã8P9@ TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. 8 IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.01/2009 www.irf.com
IRFB3307ZGPBF 价格&库存

很抱歉,暂时无法提供与“IRFB3307ZGPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货