PD - 95521A
AUTOMOTIVE MOSFET
IRFR3504ZPbF IRFU3504ZPbF
HEXFET® Power MOSFET
D
Features
l l l l l l
Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free
VDSS = 40V
G S
RDS(on) = 9.0mΩ ID = 42A
Description
Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.
D-Pak IRFR3504Z
I-Pak IRFU3504Z
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current IDM
Max.
77 54 42 310 90
Units
A
PD @TC = 25°C Power Dissipation VGS EAS (Thermally limited) EAS (Tested ) IAR EAR TJ TSTG Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current
W W/°C V mJ A mJ
d
0.60 ± 20
Single Pulse Avalanche Energy Tested Value
Ã
h
77 110 See Fig.12a, 12b, 15, 16 -55 to + 175
Repetitive Avalanche Energy Operating Junction and Storage Temperature Range
g
°C 300 (1.6mm from case ) 10 lbf in (1.1N m)
Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw
Thermal Resistance
Parameter
RθJC RθJA RθJA Junction-to-Case Junction-to-Ambient (PCB mount) Junction-to-Ambient
y
y
Typ.
Max.
1.66 40 110
Units
°C/W
i
––– ––– –––
HEXFET® is a registered trademark of International Rectifier.
www.irf.com
1
1/17/05
IRFR/U3504ZPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Coss Coss Coss eff. Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance
Min. Typ. Max. Units
40 ––– ––– 2.0 32 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.032 8.23 ––– ––– ––– ––– ––– ––– 30 9.6 12 15 74 30 38 4.5 7.5 1510 340 190 1100 340 460 ––– ––– 9.0 4.0 ––– 20 250 200 -200 45 ––– ––– ––– ––– ––– ––– ––– nH ––– ––– ––– ––– ––– ––– ––– pF ns nC nA V
Conditions
VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 42A
e
V S µA
VDS = VGS, ID = 250µA VDS = 10V, ID = 42A VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V ID = 42A VDS = 32V VGS = 10V VDD = 20V ID = 42A RG = 15 Ω VGS = 10V
e e
D G S
Between lead, 6mm (0.25in.) from package and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 32V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 32V
f
Source-Drain Ratings and Characteristics
Parameter
IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min. Typ. Max. Units
––– ––– ––– ––– ––– ––– ––– ––– 18 9.2 42 A 310 1.3 27 14 V ns nC
Conditions
MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 42A, VGS = 0V TJ = 25°C, IF = 42A, VDD = 20V di/dt = 100A/µs
Ã
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.irf.com
IRFR/U3504ZPbF
1000
TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V
1000
TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
100
BOTTOM
10
10
1
4.5V 30µs PULSE WIDTH Tj = 175°C
1 0.1 1 10 100
4.5V 30µs PULSE WIDTH Tj = 25°C
0.1 0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000.0
60
Gfs, Forward Transconductance (S)
T J = 175°C 50
ID, Drain-to-Source Current (Α)
100.0
T J = 175°C
40 30 20
T J = 25°C
10.0
1.0
T J = 25°C VDS = 20V 30µs PULSE WIDTH
10 0 0 10
0.1 4.0 5.0 6.0 7.0 8.0 9.0 10.0
VDS = 10V 380µs PULSE WIDTH 20 30 40 50
VGS, Gate-to-Source Voltage (V)
ID, Drain-to-Source Current (A)
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance Vs. Drain Current
www.irf.com
3
IRFR/U3504ZPbF
2500 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd
20
ID= 42A VDS= 32V VDS= 20V VDS= 8.0V
VGS, Gate-to-Source Voltage (V)
2000
16
C, Capacitance (pF)
Ciss
1500
12
1000
8
500
Coss Crss
4
FOR TEST CIRCUIT SEE FIGURE 13
0 1 10 100
0 0 10 20 30 40 50 QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
1000.0
1000
OPERATION IN THIS AREA LIMITED BY R DS(on)
100.0 T J = 175°C 10.0 T J = 25°C 1.0 VGS = 0V 0.1 0.2 0.6 1.0 1.4 1.8 2.2 VSD, Source-toDrain Voltage (V)
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
100µsec 10 1msec 1 Tc = 25°C Tj = 175°C Single Pulse 0 1 10 100 1000 10msec
0.1
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRFR/U3504ZPbF
80
2.0
RDS(on) , Drain-to-Source On Resistance (Normalized)
LIMITED BY PACKAGE
ID = 42A VGS = 10V
ID , Drain Current (A)
60
1.5
40
1.0
20
0 25 50 75 100 125 150 175 T C , Case Temperature (°C)
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 9. Maximum Drain Current Vs. Case Temperature
Fig 10. Normalized On-Resistance Vs. Temperature
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10
0.1
0.05 0.02 0.01
τJ
R1 R1 τJ τ1 τ2
R2 R2 τC τ
Ri (°C/W) τi (sec) 1.117 0.000536 0.5422 0.004428
τ1
τ2
0.01
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001
Ci= τi/Ri Ci= i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.01 0.1
0.001
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFR/U3504ZPbF
320
EAS, Single Pulse Avalanche Energy (mJ)
15V
280 240 200 160 120 80 40 0 25 50 75 100
VDS
L
DRIVER
ID 5.0A 6.4A BOTTOM 42A
TOP
RG
20V VGS
D.U.T
IAS tp
+ V - DD
A
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS tp
125
150
175
Starting T J, Junction Temperature (°C)
I AS
Fig 12b. Unclamped Inductive Waveforms
QG QGS VG QGD
VGS(th) Gate threshold Voltage (V)
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
10 V
4.5
4.0
3.5
Charge
ID = 250µA
Fig 13a. Basic Gate Charge Waveform
3.0
2.5
L VCC
0
DUT 1K
2.0 -75 -50 -25 0 25 50 75 100 125 150 175
T J , Temperature ( °C )
Fig 13b. Gate Charge Test Circuit
Fig 14. Threshold Voltage Vs. Temperature
6
www.irf.com
IRFR/U3504ZPbF
1000
Duty Cycle = Single Pulse
100
Avalanche Current (A)
0.01
10
0.05 0.10
Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax
1
0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
80
EAR , Avalanche Energy (mJ)
TOP Single Pulse BOTTOM 1% Duty Cycle ID = 42A
60
40
20
0 25 50 75 100 125 150
Starting T J , Junction Temperature (°C)
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 16. Maximum Avalanche Energy Vs. Temperature
www.irf.com
7
IRFR/U3504ZPbF
Driver Gate Drive
D.U.T
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
+
RG
• • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
RD
V DS VGS RG 10V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
D.U.T.
+
-VDD
Fig 18a. Switching Time Test Circuit
VDS 90%
10% VGS
td(on) tr t d(off) tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRFR/U3504ZPbF
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
EXAMPLE: THIS IS AN IRFR120 WITH ASSEMBLY LOT CODE 1234 ASSEMBLED ON WW 16, 1999 IN THE ASSEMBLY LINE "A" Note: "P" in as sembly line position indicates "Lead-Free" PART NUMBER INTERNATIONAL RECTIFIER LOGO
IRFU120 12 916A 34
ASSEMBLY LOT CODE
DATE CODE YEAR 9 = 1999 WEEK 16 LINE A
OR
PART NUMBER INT ERNATIONAL RECTIFIER LOGO
IRFU120 12 34
DATE CODE P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL) YEAR 9 = 1999 WEEK 16 A = ASSEMBLY SITE CODE
ASSEMBLY LOT CODE
www.irf.com
9
IRFR/U3504ZPbF
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
EXAMPLE: T HIS IS AN IRFU120 WIT H AS S EMB LY LOT CODE 5678 AS S EMBLED ON WW 19, 1999 IN T HE AS SEMB LY LINE "A" Note: "P" in assembly line pos ition indicates "Lead-Free" INT ERNAT IONAL RECT IFIER LOGO PART NUMBER
IRF U120 919A 56 78
AS SEMB LY LOT CODE
DAT E CODE YEAR 9 = 1999 WEEK 19 LINE A
OR
INT ERNAT IONAL RECT IFIER LOGO PART NUMBER
IRFU 120 56 78
AS S EMBLY LOT CODE
DAT E CODE P = DES IGNAT ES LEAD-F REE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 19 A = AS S EMBLY S IT E CODE
10
www.irf.com
IRFR/U3504ZPbF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR TRR TRL
16.3 ( .641 ) 15.7 ( .619 )
16.3 ( .641 ) 15.7 ( .619 )
12.1 ( .476 ) 11.9 ( .469 )
FEED DIRECTION
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
N OTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481.
Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.09mH
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 42A, VGS =10V. Part not avalanche performance. recommended for use above this value. This value determined from sample failure population. 100% Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994 Repetitive rating; pulse width limited by Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site.
Notes:
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.01/05
www.irf.com
11