0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFR3704ZPBF

IRFR3704ZPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRFR3704ZPBF - HEXFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRFR3704ZPBF 数据手册
PD - 95442A Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use l Lead-Free Benefits l Very Low RDS(on) at 4.5V VGS l Ultra-Low Gate Impedance l Fully Characterized Avalanche Voltage and Current IRFR3704ZPbF IRFU3704ZPbF HEXFET® Power MOSFET VDSS RDS(on) max 20V 8.4m: Qg 9.3nC D-Pak IRFR3704Z I-Pak IRFU3704Z Absolute Maximum Ratings Parameter VDS VGS ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C PD @TC = 100°C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Max. 20 ± 20 60 42 Units V A ™ f f 240 48 24 0.32 -55 to + 175 300 (1.6mm from case) W/°C °C W Maximum Power Dissipation Maximum Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Thermal Resistance Parameter RθJC RθJA RθJA Junction-to-Case Junction-to-Ambient (PCB Mount) Junction-to-Ambient Typ. Max. 3.1 50 110 Units °C/W gà ––– ––– ––– Notes  through … are on page 11 www.irf.com 1 12/03/04 IRFR/U3704ZPbF Static @ TJ = 25°C (unless otherwise specified) Parameter BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th)/∆TJ IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss td(on) tr td(off) tf Ciss Coss Crss Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units 20 ––– ––– ––– 1.65 ––– ––– ––– ––– ––– 41 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.015 6.7 9.2 2.1 -5.5 ––– ––– ––– ––– ––– 9.3 3.0 1.1 2.7 2.5 3.8 5.6 41 8.9 4.9 12 1190 380 170 ––– ––– 8.4 11.4 2.55 ––– 1.0 150 100 -100 ––– 14 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– pF VGS = 0V VDS = 10V ns nC nC VDS = 10V VGS = 4.5V ID = 12A S nA V mV/°C µA V Conditions VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 15A VGS = 4.5V, ID = 12A e e VDS = VGS, ID = 250µA VDS =16V, VGS = 0V VDS = 16V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 10V, ID = 12A See Fig. 16 VDS = 10V, VGS = 0V VDD = 10V, VGS = 4.5V ID = 12A Clamped Inductive Load e ƒ = 1.0MHz Avalanche Characteristics EAS IAR EAR Parameter Single Pulse Avalanche Energy Avalanche Current Ù d Typ. ––– ––– ––– Max. 41 12 4.8 Units mJ A mJ Repetitive Avalanche Energy ™ ––– ––– ––– ––– ––– ––– ––– ––– 13 4.2 Diode Characteristics Parameter IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Min. Typ. Max. Units 60 f Conditions MOSFET symbol D A 240 1.0 19 6.3 V ns nC Ù showing the integral reverse G S Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time p-n junction diode. TJ = 25°C, IS = 12A, VGS = 0V TJ = 25°C, IF = 12A, VDD = 10V di/dt = 100A/µs e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 2 www.irf.com IRFR/U3704ZPbF 1000 TOP VGS 10V 6.0V 4.5V 4.0V 3.3V 2.8V 2.6V 2.4V 1000 TOP VGS 10V 6.0V 4.5V 4.0V 3.3V 2.8V 2.6V 2.4V ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 100 100 10 BOTTOM 10 BOTTOM 1 2.4V 1 0.1 2.4V 0.01 0.1 20µs PULSE WIDTH Tj = 25°C 0.001 0.01 0.1 1 10 0.01 0.01 0.1 20µs PULSE WIDTH Tj = 175°C 1 10 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (Α) 100 T J = 175°C ID = 30A VGS = 10V 1.5 10 1 T J = 25°C 0.1 1.0 VDS = 10V 20µs PULSE WIDTH 0.01 2 3 4 5 6 7 8 9 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 VGS, Gate-to-Source Voltage (V) T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature www.irf.com 3 IRFR/U3704ZPbF 10000 VGS = 0V, f = 1 MHZ Ciss = C gs + C gd, C ds SHORTED Crss = C gd Coss = C ds + C gd 6.0 ID= 12A VGS, Gate-to-Source Voltage (V) 5.0 VDS= 18V VDS= 10V C, Capacitance(pF) 4.0 3.0 1000 Ciss Coss 2.0 Crss 100 1 10 100 1.0 0.0 0 2 4 6 8 10 12 14 VDS, Drain-to-Source Voltage (V) QG Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 1000.00 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100.00 T J = 175°C 10.00 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 1.00 TJ = 25°C 10 Tc = 25°C Tj = 175°C Single Pulse 1 0 1 10 100µsec 1msec 10msec 100 VGS = 0V 0.10 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRFR/U3704ZPbF 60 50 ID, Drain Current (A) 2.5 Limited By Package VGS(th) Gate threshold Voltage (V) 2.0 40 30 ID = 250µA 1.5 20 1.0 10 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) 0.5 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Threshold Voltage vs. Temperature 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 0.1 R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ1 τ2 τ3 τ4 τ4 Ri (°C/W) 0.8190 1.6018 0.6592 0.0418 τi (sec) 0.000092 0.000698 0.009033 0.046618 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) τJ 0.01 Ci= τi/Ri Ci= i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFR/U3704ZPbF 15V 180 EAS , Single Pulse Avalanche Energy (mJ) 160 140 120 100 80 60 40 20 0 25 50 75 100 VDS L DRIVER ID 4.9A 6.5A BOTTOM 12A TOP RG 20V VGS D.U.T IAS tp + V - DD A 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp 125 150 175 Starting T J , Junction Temperature (°C) Fig 12c. Maximum Avalanche Energy vs. Drain Current I AS LD VDS Fig 12b. Unclamped Inductive Waveforms + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. VGS 3mA + V - DS Fig 14a. Switching Time Test Circuit VDS 90% IG ID 10% Current Sampling Resistors VGS td(on) tr td(off) tf Fig 13. Gate Charge Test Circuit Fig 14b. Switching Time Waveforms 6 www.irf.com IRFR/U3704ZPbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - „ +  RG • • • • dv/dt controlled by R G Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD VDD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Vgs Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 16. Gate Charge Waveform www.irf.com 7 IRFR/U3704ZPbF Power MOSFET Selection for Non-Isolated DC/DC Converters Control FET Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the Rds(on) of the MOSFET, but these conduction losses are only about one half of the total losses. Power losses in the control switch Q1 are given by; Synchronous FET The power loss equation for Q2 is approximated by; * Ploss = Pconduction + P + Poutput drive Ploss = Irms × Rds(on) + ( g × Vg × f ) Q ( 2 ) Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput This can be expanded and approximated by; ⎛Q ⎞ + ⎜ oss × Vin × f + (Qrr × Vin × f ) ⎝2 ⎠ *dissipated primarily in Q1. Ploss = (Irms 2 × Rds(on ) ) ⎛ Qgd +⎜I × × Vin × ig ⎝ + (Qg × Vg × f ) + ⎛ Qoss × Vin × f ⎞ ⎝2 ⎠ ⎞ ⎞⎛ Qgs 2 f⎟ + ⎜ I × × Vin × f ⎟ ig ⎠⎝ ⎠ This simplified loss equation includes the terms Qgs2 and Qoss which are new to Power MOSFET data sheets. Qgs2 is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Qgs1 and Qgs2, can be seen from Fig 16. Qgs2 indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to Idmax at which time the drain voltage begins to change. Minimizing Q gs2 is a critical factor in reducing switching losses in Q1. Qoss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Qoss is formed by the parallel combination of the voltage dependant (nonlinear) capacitance’s Cds and Cdg when multiplied by the power supply input buss voltage. For the synchronous MOSFET Q2, Rds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Qoss and reverse recovery charge Qrr both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs’ susceptibility to Cdv/dt turn on. The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and Vin. As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current . The ratio of Qgd/Qgs1 must be minimized to reduce the potential for Cdv/dt turn on. Figure A: Qoss Characteristic 8 www.irf.com IRFR/U3704ZPbF D-Pak (TO-252AA) Package Outline D-Pak (TO-252AA) Part Marking Information EXAMPLE: THIS IS AN IRF R120 WITH ASSEMBLY LOT CODE 1234 AS SEMBLED ON WW 16, 1999 IN T HE ASSEMBLY LINE "A" Note: "P" in as sembly line position indicates "Lead-F ree" PART NUMBER INT ERNATIONAL RECT IFIER LOGO IRFU120 12 916A 34 ASS EMBLY LOT CODE DATE CODE YEAR 9 = 1999 WEEK 16 LINE A OR PART NUMBER INT ERNAT IONAL RECT IFIER LOGO IRFU120 12 34 DATE CODE P = DESIGNATES LEAD-FREE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 16 A = AS SEMBLY SIT E CODE ASS EMBLY LOT CODE www.irf.com 9 IRFR/U3704ZPbF I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-251AA) Part Marking Information EXAMPLE: THIS IS AN IRFU120 WITH ASSEMBLY LOT CODE 5678 ASSEMBLED ON WW 19, 1999 IN THE ASSEMBLY LINE "A" Note: "P" in assembly line position indicates "Lead-Free" INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRFU120 919A 56 78 ASSEMBLY LOT CODE DAT E CODE YEAR 9 = 1999 WEEK 19 LINE A OR INT ERNAT IONAL RECTIFIER LOGO PART NUMBER IRFU120 56 78 AS SEMBLY LOT CODE DATE CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPTIONAL) YEAR 9 = 1999 WEEK 19 A = ASS EMBLY SIT E CODE 10 www.irf.com IRFR/U3704ZPbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR TRL 16.3 ( .641 ) 15.7 ( .619 ) 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes:  Repetitive rating; pulse width limited by max. junction temperature. ‚ Starting TJ = 25°C, L = 0.57mH, RG = 25Ω, IAS = 12A. ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%. „ Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 30A. … When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 12/04 www.irf.com 11 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/
IRFR3704ZPBF 价格&库存

很抱歉,暂时无法提供与“IRFR3704ZPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货