0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFR4104

IRFR4104

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRFR4104 - Power MOSFET(Vdss=40V, Rds(on)=5.5mohm, Id=42A) - International Rectifier

  • 数据手册
  • 价格&库存
IRFR4104 数据手册
PD - 94728 AUTOMOTIVE MOSFET IRFR4104 IRFU4104 HEXFET® Power MOSFET D Features ● ● ● ● ● Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax VDSS = 40V G S RDS(on) = 5.5mΩ ID = 42A Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. D-Pak IRFR4104 I-Pak IRFU4104 Absolute Maximum Ratings Parameter ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current IDM Max. 119 84 42 480 140 Units A ™ PD @TC = 25°C Power Dissipation Linear Derating Factor VGS Gate-to-Source Voltage EAS (Thermally limited) Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value EAS (Tested ) W W/°C V mJ A mJ d 0.95 ± 20 IAR EAR TJ TSTG Avalanche Current Ù h 145 310 See Fig.12a, 12b, 15, 16 -55 to + 175 Repetitive Avalanche Energy Operating Junction and Storage Temperature Range g °C 300 (1.6mm from case ) 10 lbf in (1.1N m) Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw Thermal Resistance Parameter RθJC RθJA RθJA Junction-to-Case Junction-to-Ambient (PCB mount) Junction-to-Ambient y y Typ. Max. 1.05 40 110 Units °C/W i ––– ––– ––– HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 7/17/03 IRFR/U4104 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Coss Coss Coss eff. Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. Typ. Max. Units 40 ––– ––– 2.0 58 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.032 4.3 ––– ––– ––– ––– ––– ––– 59 19 24 17 69 37 36 4.5 7.5 2950 660 370 2130 590 850 ––– ––– 5.5 4.0 ––– 20 250 200 -200 89 ––– ––– ––– ––– ––– ––– ––– nH ––– ––– ––– ––– ––– ––– ––– pF ns nC nA V Conditions VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 42A e V S µA VDS = VGS, ID = 250µA VDS = 10V, ID = 42A VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V ID = 42A VDS = 32V VGS = 10V VDD = 20V ID = 42A RG = 6.8 Ω VGS = 10V e e Between lead, 6mm (0.25in.) from package and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 32V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 32V f Source-Drain Ratings and Characteristics Parameter IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– 28 24 42 A 480 1.3 42 36 V ns nC Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 42A, VGS = 0V TJ = 25°C, IF = 42A, VDD = 20V di/dt = 100A/µs Ù e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 2 www.irf.com IRFR/U4104 1000 TOP 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 1000 TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 100 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 100 4.5V 10 10 4.5V 60µs PULSE WIDTH Tj = 25°C 1 0.1 0 60µs PULSE WIDTH Tj = 175°C 1 0.1 0 1 10 100 100 1 10 100 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 120 Gfs, Forward Transconductance (S) T J = 25°C ID, Drain-to-Source Current (Α) 100 80 60 T J = 175°C T J = 175°C 100 TJ = 25°C 40 20 0 0 20 40 60 80 100 ID, Drain-to-Source Current (A) 10 VDS = 20V 60µs PULSE WIDTH 1 4 6 8 10 VDS = 10V 380µs PULSE WIDTH VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance Vs. Drain Current www.irf.com 3 IRFR/U4104 5000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd 20 ID= 42A VGS, Gate-to-Source Voltage (V) 4000 16 VDS= 32V VDS= 20V C, Capacitance (pF) 3000 Ciss 12 2000 8 Coss 1000 4 Crss 0 1 10 100 0 0 20 40 60 80 100 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000.0 10000 OPERATION IN THIS AREA LIMITED BY R DS(on) ISD, Reverse Drain Current (A) ID, Drain-to-Source Current (A) 1000 100.0 T J = 175°C 100 100µsec 10 1msec 1 Tc = 25°C Tj = 175°C Single Pulse 0 1 10 10msec 10.0 T J = 25°C 1.0 VGS = 0V 0.1 0.0 0.5 1.0 1.5 2.0 VSD, Source-toDrain Voltage (V) 0.1 100 1000 VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRFR/U4104 RDS(on) , Drain-to-Source On Resistance (Normalized) 120 LIMITED BY PACKAGE 100 ID , Drain Current (A) 2.0 ID = 42A VGS = 10V 80 60 40 20 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) 1.5 1.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 9. Maximum Drain Current Vs. Case Temperature Fig 10. Normalized On-Resistance Vs. Temperature 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 τJ τJ τ1 τ1 R1 R1 τ2 R2 R2 τC τ2 τ 0.1 Ri (°C/W) 0.5067 0.5428 τi (sec) 0.000414 0.004081 0.01 Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFR/U4104 EAS, Single Pulse Avalanche Energy (mJ) 15V 600 500 VDS L DRIVER ID 9.2A 13A BOTTOM 42A TOP 400 RG 20V VGS D.U.T IAS tp + V - DD A 300 0.01Ω 200 Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp 100 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature (°C) I AS Fig 12b. Unclamped Inductive Waveforms QG Fig 12c. Maximum Avalanche Energy Vs. Drain Current 10 V QGS VG QGD VGS(th) Gate threshold Voltage (V) 4.0 3.0 Charge ID = 250µA Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 2.0 50KΩ 12V .2µF .3µF D.U.T. VGS 3mA + V - DS 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage Vs. Temperature 6 www.irf.com IRFR/U4104 1000 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax Avalanche Current (A) 100 0.01 0.05 10 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 160 EAR , Avalanche Energy (mJ) TOP Single Pulse BOTTOM 1% Duty Cycle ID = 42A 120 80 40 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com 7 IRFR/U4104 Driver Gate Drive D.U.T + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs RD V DS VGS RG 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % D.U.T. + -VDD Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRFR/U4104 D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) 6.73 (.265) 6.35 (.250) -A5.46 (.215) 5.21 (.205) 4 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) 6.45 (.245) 5.68 (.224) 6.22 (.245) 5.97 (.235) 1.02 (.040) 1.64 (.025) 1 2 3 0.51 (.020) MIN. 10.42 (.410) 9.40 (.370) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN -B1.52 (.060) 1.15 (.045) 3X 1.14 (.045) 2X 0.76 (.030) 2.28 (.090) 4.57 (.180) 0.89 (.035) 0.64 (.025) 0.25 (.010) M AMB NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-252AA. 4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP, SOLDER DIP MAX. +0.16 (.006). 0.58 (.023) 0.46 (.018) D-Pak (TO-252AA) Part Marking Information Notes : T his part marking information applies to devices produced before 02/26/2001 EXAMPLE: T HIS IS AN IRFR120 WIT H AS S EMBLY LOT CODE 9U1P INT ERNATIONAL RECTIFIER LOGO ASS EMBLY LOT CODE IRFU120 016 9U 1P DAT E CODE YEAR = 0 WEEK = 16 Notes : T his part marking information applies to devices produced after 02/26/2001 EXAMPLE: T HIS IS AN IRFR120 WIT H AS S EMBLY LOT CODE 1234 AS SEMBLED ON WW 16, 1999 IN T HE AS SEMBLY LINE "A" PART NUMBER IRFU120 12 916A 34 INT ERNATIONAL RECTIFIER LOGO ASS EMBLY LOT CODE DATE CODE YEAR 9 = 1999 WEEK 16 LINE A www.irf.com 9 IRFR/U4104 I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) 6.73 (.265) 6.35 (.250) -A5.46 (.215) 5.21 (.205) 4 6.45 (.245) 5.68 (.224) 1.52 (.060) 1.15 (.045) 1 -B2.28 (.090) 1.91 (.075) 9.65 (.380) 8.89 (.350) 2 3 NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-252AA. 4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP, SOLDER DIP MAX. +0.16 (.006). 6.22 (.245) 5.97 (.235) 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 0.58 (.023) 0.46 (.018) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 3X 1.14 (.045) 0.76 (.030) 3X 0.89 (.035) 0.64 (.025) M AMB 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) 2.28 (.090) 2X 0.25 (.010) I-Pak (TO-251AA) Part Marking Information Notes : T his part marking information applies to devices produced before 02/26/2001 EXAMPLE: T HIS IS AN IRFR120 WIT H AS SEMBLY LOT CODE 9U1P INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE DAT E CODE YEAR = 0 WEEK = 16 IRFU120 016 9U 1P Notes : T his part marking information applies to devices produced after 02/26/2001 EXAMPLE: T HIS IS AN IRFR120 WIT H AS SEMBLY LOT CODE 5678 AS SEMBLED ON WW 19, 1999 IN T HE ASS EMBLY LINE "A" INTERNATIONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER IRFU120 919A 56 78 DAT E CODE YEAR 9 = 1999 WEEK 19 LINE A 10 www.irf.com IRFR/U4104 D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR TRL 16.3 ( .641 ) 15.7 ( .619 ) 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481.  Repetitive rating; pulse width limited by „ Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). ‚ Limited by TJmax, starting TJ = 25°C, L = 0.16mH … Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 42A, VGS =10V. Part not avalanche performance. recommended for use above this value. † This value determined from sample failure population. 100% ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. ‡ When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994 Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. Notes: IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.7/03 www.irf.com 11
IRFR4104 价格&库存

很抱歉,暂时无法提供与“IRFR4104”相匹配的价格&库存,您可以联系我们找货

免费人工找货
IRFR4104TRPBF
  •  国内价格
  • 1+3.8096

库存:24