0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFR4620PBF

IRFR4620PBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRFR4620PBF - HEXFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRFR4620PBF 数据手册
PD -96207A IRFR4620PbF IRFU4620PbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free D G S VDSS RDS(on) typ. max. ID D D 200V 64m: 78m: 24A S G G D S DPak IRFR4620PbF G D IPAK IRFU4620PbF S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Max. 24 17 100 144 0.96 ± 20 54 -55 to + 175 300 Units A W W/°C V V/ns c e °C Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy c d c i 113 See Fig. 14, 15, 22a, 22b, mJ A mJ Thermal Resistance Symbol RθJC RθJA RθJA Junction-to-Case Junction-to-Ambient (PCB Mount) Junction-to-Ambient j Parameter Typ. ––– ––– ––– Max. 1.045 50 110 Units °C/W ORDERING INFORMATION: See detailed ordering and shipping information on the last page of this data sheet. Notes  through ˆ are on page 11 www.irf.com 1 06/08/09 IRFR/U4620PbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS IGSS RG(int) Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance Min. Typ. Max. Units 200 ––– ––– 3.0 ––– ––– ––– ––– ––– Conditions ––– 0.23 64 ––– ––– ––– ––– ––– 2.6 ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 5mA 78 mΩ VGS = 10V, ID = 15A 5.0 V VDS = VGS, ID = 100µA VDS = 200V, VGS = 0V 20 µA 250 VDS = 200V, VGS = 0V, TJ = 125°C 100 VGS = 20V nA VGS = -20V -100 f ™ ––– Ω Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units 37 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 25 8.2 7.9 17 13.4 22.4 25.4 14.8 1710 125 30 113 317 ––– 38 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S Conditions Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) g hà VDS = 50V, ID = 15A ID = 15A VDS = 100V nC VGS = 10V ID = 15A, VDS =0V, VGS = 10V VDD = 130V ID = 15A ns RG = 7.3Ω VGS = 10V VGS = 0V VDS = 50V pF ƒ = 1.0MHz (See Fig.5) VGS = 0V, VDS = 0V to 160V (See Fig.11) VGS = 0V, VDS = 0V to 160V f f h g Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Min. Typ. Max. Units ––– ––– ––– ––– 24 A 100 Conditions MOSFET symbol showing the integral reverse G S D Ù Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time ––– ––– 1.3 V ––– 78 ––– ns ––– 99 ––– ––– 294 ––– nC TJ = 125°C ––– 432 ––– ––– 7.6 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) p-n junction diode. TJ = 25°C, IS = 15A, VGS = 0V VR = 100V, TJ = 25°C TJ = 125°C IF = 15A di/dt = 100A/µs TJ = 25°C f f 2 www.irf.com IRFR/U4620PbF 1000 TOP VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 1000 TOP VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V 5.0V ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 100 100 BOTTOM 10 BOTTOM 10 5.0V 1 5.0V 0.1 ≤60µs PULSE WIDTH Tj = 25°C 0.01 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) 1 ≤60µs PULSE WIDTH Tj = 175°C 0.1 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 RDS(on) , Drain-to-Source On Resistance (Normalized) Fig 2. Typical Output Characteristics 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ID = 15A VGS = 10V ID, Drain-to-Source Current (A) 100 TJ = 175°C T J = 25°C 10 1 VDS = 50V ≤60µs PULSE WIDTH 0.1 2 4 6 8 10 12 14 16 -60 -40 -20 0 20 40 60 80 100 120140160 180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 100000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd Fig 4. Normalized On-Resistance vs. Temperature 14.0 VGS, Gate-to-Source Voltage (V) 12.0 10.0 8.0 6.0 4.0 2.0 0.0 ID= 15A 10000 C, Capacitance (pF) VDS= 160V VDS= 100V VDS= 40V 1000 Ciss Coss 100 Crss 10 1 10 100 1000 VDS, Drain-to-Source Voltage (V) 0 5 10 15 20 25 30 35 QG, Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRFR/U4620PbF 100 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100µsec 1msec T J = 175°C 10 T J = 25°C ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 10 10msec DC 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 10 100 1000 VGS = 0V 1.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 30 25 ID, Drain Current (A) Fig 8. Maximum Safe Operating Area V(BR)DSS , Drain-to-Source Breakdown Voltage (V) VDS, Drain-to-Source Voltage (V) 260 Id = 5mA 250 240 230 220 210 200 190 -60 -40 -20 0 20 40 60 80 100 120140 160180 T J , Temperature ( °C ) 20 15 10 5 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature 3.0 Fig 10. Drain-to-Source Breakdown Voltage 500 EAS , Single Pulse Avalanche Energy (mJ) 2.5 2.0 450 400 350 300 250 200 150 100 50 0 25 50 75 100 ID TOP 2.05A 2.94A BOTTOM 15A Energy (µJ) 1.5 1.0 0.5 0.0 -50 0 50 100 150 200 125 150 175 Fig 11. Typical COSS Stored Energy VDS, Drain-to-Source Voltage (V) Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent 4 www.irf.com IRFR/U4620PbF 10 Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 0.0001 0.001 0.1 τJ R1 R1 τJ τ1 τ2 R2 R2 τC τ Ri (°C/W) 0.456 0.589 τi (sec) 0.000311 0.003759 τ1 τ2 Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 0.001 1E-006 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Duty Cycle = Single Pulse Avalanche Current (A) 10 0.01 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse) 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 tav (sec) 1.0E-03 1.0E-02 1.0E-01 Fig 14. Typical Avalanche Current vs.Pulsewidth 120 100 80 60 40 20 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 15A Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com EAR , Avalanche Energy (mJ) 5 IRFR/U4620PbF 6.0 VGS(th), Gate threshold Voltage (V) 90 80 70 60 IRRM (A) 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) ID = 100µA ID = 250uA ID = 1.0mA ID = 1.0A IF = 10A V R = 100V TJ = 25°C TJ = 125°C 50 40 30 20 10 0 0 200 400 600 800 1000 diF /dt (A/µs) Fig 16. Threshold Voltage vs. Temperature 90 80 70 60 IRRM (A) Fig. 17 - Typical Recovery Current vs. dif/dt 2000 IF = 15A V R = 100V TJ = 25°C TJ = 125°C 1800 1600 1400 QRR (A) IF = 10A V R = 100V TJ = 25°C TJ = 125°C 50 40 30 20 10 0 0 200 400 600 800 1000 diF /dt (A/µs) 1200 1000 800 600 400 200 0 200 400 600 800 1000 diF /dt (A/µs) Fig. 18 - Typical Recovery Current vs. dif/dt 2000 1800 1600 1400 QRR (A) Fig. 19 - Typical Stored Charge vs. dif/dt IF = 15A V R = 100V TJ = 25°C TJ = 125°C 1200 1000 800 600 400 200 0 200 400 600 800 1000 diF /dt (A/µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFR/U4620PbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit VDS VGS RG RD Fig 22b. Unclamped Inductive Waveforms VDS 90% D.U.T. + - VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 10% VGS td(on) tr t d(off) tf Fig 23a. Switching Time Test Circuit Current Regulator Same Type as D.U.T. Fig 23b. Switching Time Waveforms Id Vds Vgs 50KΩ 12V .2µF .3µF D.U.T. VGS 3mA + V - DS Vgs(th) IG ID Current Sampling Resistors Qgs1 Qgs2 Qgd Qgodr www.irf.com Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform 7 IRFR/U4620PbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSAS XDUCÃ6TT@H7G` GPUÃ8P9@à !"# %Ã! ! Q6SUÃIVH7@S DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G@9ÃPIÃXXà DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ6Å ,5)5 $   96U@Ã8P9@ `@6Sà X@@Fà GDI@Ã6 Ã2Ã! % I‚‡r)ÃÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚ vqvph‡r†ÃÅGrhqA…rrÅ 6TT@H7G` GPUÃ8P9@ ÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚Ãvqvph‡r† ÅGrhqA…rrÅĈhyvsvph‡v‚Ã‡‚ÇurÃp‚†ˆ€r…yr‰ry 25 Q6SUÃIVH7@S DIU@SI6UDPI6G S@8UDAD@S GPBP ,5)5   9 6U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69AS@@ QSP9V8UÃPQUDPI6G QÃ2Ã9@TDBI6U@TÃG@69AS@@ QSP9V8UÃRV6GDAD@9ÃUPÃUC@ 8PITVH@SÃG@W@GÃPQUDPI6G 6TT@H7G` GPUÃ8P9@ `@6Sà X@@Fà Ã2Ã! % 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRFR/U4620PbF I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-251AA) Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSAV ! XDUCÃ6TT@H7G` GPUÃ8P9@Ã$%&' 6TT@H7G@9ÃPIÃXXà (Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ6Å I‚‡r)ÃÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚ vqvph‡r†ÃGrhqA…rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S ,5)8 $   96U@Ã8P9@ `@6Sà Ã2Ã! X@@Fà ( GDI@Ã6 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S ,5)8   96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69AS@@ QSP9V8UÃPQUDPI6G `@6Sà Ã2Ã! X@@Fà ( 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRFR/U4620PbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR TRL 16.3 ( .641 ) 15.7 ( .619 ) 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com IRFR/U4620PbF Orderable part number IRFR4620PbF IRFR4620TRPbF IRFU4620PbF Qualification Information† Qualification level Package Type D-PAK D-PAK I-PAK Standard Pack Form Quantity Tube/Bulk 75 Tape and Reel 2000 Tube/Bulk 75 Note Industrial †† ††† (per JEDEC JESD47F guidelines) Comments: This family of products has passed JEDEC’s Industrial qualification. IR’s Consumer qualification level is granted by extension of the higher Industrial level. Moisture Sensitivity Level D-PAK I-PAK RoHS Compliant Yes MSL1 (per JEDEC J-STD-020D†††) Not applicable † Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ ††† Applicable version of JEDEC standard at the time of product release. Notes:  Repetitive rating; pulse width limited by max. junction temperature. ‚ Limited by TJmax, starting TJ = 25°C, L = 1.0mH RG = 25Ω, IAS = 15A, VGS =10V. Part not recommended for use above this value . ƒ ISD ≤ 15A, di/dt ≤ 634A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. „ Pulse width ≤ 400µs; duty cycle ≤ 2%. … Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. † Coss eff. (ER) is a fixed capacitance that gives the same energy as ‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom ˆ Rθ is measured at TJ approximately 90°C Coss while VDS is rising from 0 to 80% VDSS . mended footprint and soldering techniques refer to application note #AN-994. Data and specifications subject to change without notice www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/2009 11
IRFR4620PBF 价格&库存

很抱歉,暂时无法提供与“IRFR4620PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货