0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFS3006PBF

IRFS3006PBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRFS3006PBF - HEXFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRFS3006PBF 数据手册
PD - 96188 IRFS3006PbF IRFSL3006PbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits G Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free D VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited) D 60V 2.0m: 2.5m: 270A 195A c S D S G G D S D2Pak IRFS3006PbF TO-262 IRFSL3006PbF G D S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw Max. d f 270 191 195 1080 375 2.5 ± 20 10 -55 to + 175 300 10lb in (1.1N m) 320 See Fig. 14, 15, 22a, 22b, ™ ™ Units A W W/°C V V/ns °C x x Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Ãd e Thermal Resistance Symbol RθJC RθJA Junction-to-Case Junction-to-Ambient g mJ A mJ kl jk Parameter Typ. ––– ––– Max. 0.4 40 Units °C/W www.irf.com 1 10/06/08 IRFS/SL3006PbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS IGSS RG Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance Min. Typ. Max. Units 60 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– 0.07 2.0 ––– ––– ––– ––– ––– 2.0 ––– ––– 2.5 4.0 20 250 100 -100 ––– Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mA mΩ VGS = 10V, ID = 170A V VDS = VGS, ID = 250µA µA VDS = 60V, VGS = 0V VDS = 60V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω g d Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units ––– 200 37 60 140 16 182 118 189 8970 1020 534 1480 1920 ––– 300 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Conditions VDS = 25V, ID = 170A ID = 170A VDS =30V VGS = 10V ID = 170A, VDS =0V, VGS = 10V VDD = 39V ID = 170A RG = 2.7Ω VGS = 10V VGS = 0V VDS = 50V ƒ = 1.0MHz, See Fig. 5 VGS = 0V, VDS = 0V to 48V , See Fig. 11 VGS = 0V, VDS = 0V to 48V 280 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Effective Output Capacitance (Energy Related) ––– ––– Effective Output Capacitance (Time Related) g ns pF g h i h Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Min. Typ. Max. Units ––– ––– ––– 270 ––– ™ Conditions MOSFET symbol showing the integral reverse G D A A Ãd 1080 Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 170A, VGS = 0V VR = 51V, ––– 44 ––– ns TJ = 25°C TJ = 125°C IF = 170A ––– 48 ––– di/dt = 100A/µs ––– 63 ––– nC TJ = 25°C TJ = 125°C ––– 77 ––– ––– 2.4 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) g S g Notes:  Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) ‚ Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.022mH RG = 25 Ω, IAS = 170A, VGS =10V. Part not recommended for use above this value . „ ISD ≤ 170A, di/dt ≤ 1360A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. … Pulse width ≤ 400µs; duty cycle ≤ 2%. † Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . ‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom Š RθJC value shown is at time zero Coss while VDS is rising from 0 to 80% VDSS. mended footprint and soldering techniques refer to application note #AN-994. ‰ Rθ is measured at TJ approximately 90°C 2 www.irf.com IRFS/SL3006PbF 1000 TOP 1000 ID, Drain-to-Source Current (A) 100 BOTTOM ID, Drain-to-Source Current (A) VGS 15V 10V 8.0V 6.0V 5.0V 4.5V 4.0V 3.5V TOP BOTTOM VGS 15V 10V 8.0V 6.0V 5.0V 4.5V 4.0V 3.5V 100 10 3.5V ≤ 60µs PULSE WIDTH Tj = 175°C 10 0.1 1 10 100 3.5V 1 0.1 1 ≤ 60µs PULSE WIDTH Tj = 25°C 10 100 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 Fig 2. Typical Output Characteristics 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current(Α) ID = 170A VGS = 10V 2.0 100 TJ = 175°C 1.5 TJ = 25°C 10 1.0 VDS = 25V ≤ 60µs PULSE WIDTH 1 2.0 3.0 4.0 5.0 6.0 7.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 VGS, Gate-to-Source Voltage (V) TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics 16000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd Fig 4. Normalized On-Resistance vs. Temperature 16 VGS, Gate-to-Source Voltage (V) ID= 170A 12 VDS= 48V VDS= 30V 12000 C, Capacitance (pF) Ciss 8000 8 4000 4 Coss Crss 0 0 40 80 120 160 200 240 280 0 1 10 VDS, Drain-to-Source Voltage (V) 100 QG Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRFS/SL3006PbF 1000 10000 ID, Drain-to-Source Current (A) TJ = 175°C OPERATION IN THIS AREA LIMITED BY R DS (on) 100µsec ISD , Reverse Drain Current (A) 100 1000 100 LIMITED BY PACKAGE 10 TJ = 25°C 1 10 1msec 10msec 1 VGS = 0V 0.1 0.0 0.4 0.8 1.2 1.6 2.0 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 10 DC 0.1 100 VSD, Source-to-Drain Voltage (V) VDS, Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage V(BR)DSS , Drain-to-Source Breakdown Voltage Fig 8. Maximum Safe Operating Area 80 300 Limited By Package 250 ID, Drain Current (A) ID = 5mA 75 200 150 100 50 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) 70 65 60 55 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature EAS, Single Pulse Avalanche Energy (mJ) 2.0 Fig 10. Drain-to-Source Breakdown Voltage 1400 1200 1000 800 600 400 200 0 1.5 ID 20A 27A BOTTOM 170A TOP Energy (µJ) 1.0 0.5 0.0 0 10 20 30 40 50 60 25 50 75 100 125 150 175 VDS, Drain-to-Source Voltage (V) Starting TJ, Junction Temperature (°C) Fig 11. Typical COSS Stored Energy Fig 12. Maximum Avalanche Energy Vs. DrainCurrent 4 www.irf.com IRFS/SL3006PbF 1 Thermal Response ( ZthJC ) D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 τJ R1 R1 τJ τ1 τ2 R2 R2 τC Ri (°C/W) 0.22547 τι (sec) 0.006073 τ1 τ2 0.175365 0.000343 0.001 Ci= τi/ Ri C SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 0.0001 1E-006 1E-005 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) 100 0.01 0.05 10 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth 400 EAR , Avalanche Energy (mJ) 300 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 170A 200 100 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) 175 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFS/SL3006PbF 4.0 20 VGS(th) Gate threshold Voltage (V) 3.5 ID = 1.0A ID = 1.0mA ID = 250µA IRRM - (A) 16 3.0 12 2.5 8 IF = 112A VR = 51V TJ = 125°C 0 TJ = 25°C 100 200 300 400 500 600 700 800 2.0 4 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 TJ , Temperature ( °C ) dif / dt - (A / µs) Fig 16. Threshold Voltage Vs. Temperature 20 Fig. 17 - Typical Recovery Current vs. dif/dt 700 600 16 500 QRR - (nC) IF = 170A VR = 51V TJ = 125°C TJ = 25°C IRRM - (A) 12 400 300 200 100 0 IF = 112A VR = 51V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 8 4 0 100 200 300 400 500 600 700 800 dif / dt - (A / µs) dif / dt - (A / µs) Fig. 18 - Typical Recovery Current vs. dif/dt 700 600 500 Fig. 19 - Typical Stored Charge vs. dif/dt QRR - (nC) 400 300 200 100 0 100 200 300 400 500 600 700 800 IF = 170A VR = 51V TJ = 125°C TJ = 25°C dif / dt - (A / µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFS/SL3006PbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit VDS VGS RG RD Fig 22b. Unclamped Inductive Waveforms VDS 90% D.U.T. + - VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 10% VGS td(on) tr t d(off) tf Fig 23a. Switching Time Test Circuit Current Regulator Same Type as D.U.T. Fig 23b. Switching Time Waveforms Id Vds Vgs 50KΩ 12V .2µF .3µF D.U.T. VGS 3mA + V - DS Vgs(th) IG ID Current Sampling Resistors Qgs1 Qgs2 Qgd Qgodr www.irf.com Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform 7 IRFS/SL3006PbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information UCDTÃDTÃ6IÃDSA$"TÃXDUC GPUÃ8P9@Ã'!# 6TT@H7G@9ÃPIÃXXÃ!Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅGÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S A$"T 96U@Ã8P9@ `@6SÃÃ2Ã! X@@FÃ! GDI@ÃG 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ A$"T Q6SUÃIVH7@S 96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69ÃÃAS@@ QSP9V8UÃPQUDPI6G `@6SÃÃ2Ã! X@@FÃ! 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ www.irf.com Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 IRFS/SL3006PbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSG" "G GPUÃ8P9@à &'( 6TT@H7G@9ÃPIÃXXà (à ((& DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ `@6SÃ&Ã2à ((& X@@Fà ( GDI@Ã8 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69AS@@ QSP9V8UÃPQUDPI6G `@6SÃ&Ã2à ((& X@@Fà ( 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ www.irf.com Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 IRFS/SL3006PbF D2Pak (TO-263AB) Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. 10 IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/2008 www.irf.com
IRFS3006PBF 价格&库存

很抱歉,暂时无法提供与“IRFS3006PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货