PD - 96186
IRFS4010PbF IRFSL4010PbF
HEXFET® Power MOSFET
Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free
D G S
VDSS RDS(on) typ. max. ID
D
100V 3.9m: 4.7m: 180A
D
S G G
D
S
D2Pak IRFS4010PbF
TO-262 IRFSL4010PbF
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG
Parameter
Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw
Max.
180 127 720 375 2.5 ± 20 31 -55 to + 175 300 10lb in (1.1N m) 318 See Fig. 14, 15, 22a, 22b,
Units
A W W/°C V V/ns
c
e
°C
x
x
Avalanche Characteristics
EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy
c
d
f ij
mJ A mJ
Thermal Resistance
Symbol
RθJC RθJA Junction-to-Case Junction-to-Ambient (PCB Mount)
jk
Parameter
Typ.
––– –––
Max.
0.40 40
Units
°C/W
www.irf.com
1
10/06/08
IRFS/SL4010PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS IGSS RG(int)
Parameter
Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance
Min. Typ. Max. Units
100 ––– ––– 2.0 ––– ––– ––– –––
–––
Conditions
––– 0.10 3.9 ––– ––– ––– ––– ––– 2.0
––– ––– 4.7 4.0 20 250 100 -100 –––
V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mA mΩ VGS = 10V, ID = 106A V VDS = VGS, ID = 250µA VDS = 100V, VGS = 0V µA VDS = 100V, VGS = 0V, TJ = 125°C VGS = 20V nA VGS = -20V
f
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR)
Parameter
Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
Min. Typ. Max. Units
189 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 143 38 50 93 21 86 100 77 9575 660 270 757 1112 ––– 215 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC
Conditions
VDS = 25V, ID = 106A ID = 106A VDS = 50V VGS = 10V ID = 106A, VDS =0V, VGS = 10V VDD = 65V ID = 106A RG = 2.7Ω VGS = 10V VGS = 0V VDS = 50V ƒ = 1.0MHz See Fig.5 VGS = 0V, VDS = 0V to 80V See Fig.11 VGS = 0V, VDS = 0V to 80V
f
ns
f
Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related)
g
h
pF
h g
Diode Characteristics
Symbol
IS ISM VSD trr Qrr IRRM ton
Parameter
Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time
Min. Typ. Max. Units
––– ––– ––– ––– 180 A 720
Conditions
MOSFET symbol showing the integral reverse
G S D
Ã
Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time
––– ––– 1.3 V ––– 72 ––– ns ––– 81 ––– ––– 210 ––– nC TJ = 125°C ––– 268 ––– ––– 5.3 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
p-n junction diode. TJ = 25°C, IS = 106A, VGS = 0V VR = 85V, TJ = 25°C TJ = 125°C IF = 106A di/dt = 100A/µs TJ = 25°C
f
f
Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.057mH RG = 25 Ω, IAS = 106A, VGS =10V. Part not recommended for use above this value . ISD ≤ 106A, di/dt ≤ 1319A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%.
Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
Coss eff. (ER) is a fixed capacitance that gives the same energy as When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
RθJC value shown is at time zero Coss while VDS is rising from 0 to 80% VDSS. mended footprint and soldering techniques refer to application note #AN-994.
Rθ is measured at TJ approximately 90°C
2
www.irf.com
IRFS/SL4010PbF
1000
TOP VGS 15V 10V 8.0V 7.0V 5.0V 4.5V 4.3V 4.0V
1000
TOP VGS 15V 10V 8.0V 7.0V 5.0V 4.5V 4.3V 4.0V
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
BOTTOM
10
100
1
≤60µs PULSE WIDTH
Tj = 25°C 0.1 0.1 4.0V 1 10 100
4.0V 10 0.1 1
≤60µs PULSE WIDTH
Tj = 175°C 10 100
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
1000
Fig 2. Typical Output Characteristics
2.5
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID, Drain-to-Source Current (A)
ID = 106A VGS = 10V 2.0
100 TJ = 175°C 10 T J = 25°C
1.5
1 VDS = 50V ≤60µs PULSE WIDTH 0.1 2 3 4 5 6 7
1.0
0.5 -60 -40 -20 0 20 40 60 80 100 120140160 180 T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
100000
VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd
Fig 4. Normalized On-Resistance vs. Temperature
14.0
VGS, Gate-to-Source Voltage (V)
12.0 10.0 8.0 6.0 4.0 2.0 0.0
ID= 106A
C, Capacitance (pF)
VDS= 80V VDS= 50V
10000
Ciss
1000
Coss Crss
100 1 10 100 1000 VDS, Drain-to-Source Voltage (V)
0
25
50
75 100 125 150 175 200 225
QG, Total Gate Charge (nC)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
www.irf.com
3
IRFS/SL4010PbF
1000 10000 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000
1msec
ISD, Reverse Drain Current (A)
100
T J = 175°C
ID, Drain-to-Source Current (A)
100
10
T J = 25°C
10
DC
10msec
100µsec
1
VGS = 0V 1.0 0.2 0.6 1.0 1.4 1.8 VSD, Source-to-Drain Voltage (V) 0.1 1
Tc = 25°C Tj = 175°C Single Pulse 10 100 1000
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
200 180 160
ID, Drain Current (A)
Fig 8. Maximum Safe Operating Area
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
130 Id = 5mA 125 120 115 110 105 100 95 -60 -40 -20 0 20 40 60 80 100 120140 160180 T J , Temperature ( °C )
140 120 100 80 60 40 20 0 25 50 75 100 125 150 175 T C , Case Temperature (°C)
Fig 9. Maximum Drain Current vs. Case Temperature
4.0 3.5 3.0
Fig 10. Drain-to-Source Breakdown Voltage
1400
EAS , Single Pulse Avalanche Energy (mJ)
1200 1000 800 600 400 200 0
ID 12.5A 17A BOTTOM 106A TOP
Energy (µJ)
2.5 2.0 1.5 1.0 0.5 0.0 0 20 40 60 80 100 120
25
50
75
100
125
150
175
Fig 11. Typical COSS Stored Energy
VDS, Drain-to-Source Voltage (V)
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
4
www.irf.com
IRFS/SL4010PbF
1
Thermal Response ( Z thJC ) °C/W
D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01
R1 R1 τJ τ1 τ2 R2 R2 τC τ1 τ2 τ
τJ
Ri (°C/W) 0.17537 0.22547
τi (sec) 0.000343 0.006073
0.001 SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1
0.0001 1E-006
1E-005
0.0001
0.001
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Duty Cycle = Single Pulse
Avalanche Current (A)
100
0.01 0.05
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse)
10
0.10
1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 tav (sec) 1.0E-03 1.0E-02 1.0E-01
Fig 14. Typical Avalanche Current vs.Pulsewidth
350 300
EAR , Avalanche Energy (mJ)
TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 106A
250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C)
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFS/SL4010PbF
4.5
VGS(th) , Gate threshold Voltage (V)
35 30 25
IRR (A)
4.0 3.5 3.0 2.5 2.0 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) ID = 250µA ID = 1.0mA ID = 1.0A
IF = 70A V R = 85V TJ = 25°C TJ = 125°C
20 15 10 5 0 0 200 400 600 800 1000 diF /dt (A/µs)
Fig 16. Threshold Voltage vs. Temperature
35 30 25
IRR (A)
Fig. 17 - Typical Recovery Current vs. dif/dt
1100
IF = 106A V R = 85V TJ = 25°C TJ = 125°C
1000 900 800
QRR (A)
IF = 70A V R = 85V TJ = 25°C TJ = 125°C
20 15 10 5 0 0 200 400 600 800 1000 diF /dt (A/µs)
700 600 500 400 300 200 100 0 200 400 600 800 1000 diF /dt (A/µs)
Fig. 18 - Typical Recovery Current vs. dif/dt
1100 1000 900 800
QRR (A)
Fig. 19 - Typical Stored Charge vs. dif/dt
IF = 106A V R = 85V TJ = 25°C TJ = 125°C
700 600 500 400 300 200 0 200 400 600 800 1000 diF /dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFS/SL4010PbF
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
• • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage
Body Diode
Forward Drop
Inductor Curent Inductor Current
Ripple ≤ 5% ISD
* VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
15V
tp
DRIVER
VDS
L
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
A
0.01Ω
I AS
Fig 22a. Unclamped Inductive Test Circuit
VDS VGS RG RD
Fig 22b. Unclamped Inductive Waveforms
VDS 90%
D.U.T.
+
- VDD
V10V GS
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
10% VGS
td(on) tr t d(off) tf
Fig 23a. Switching Time Test Circuit
Current Regulator Same Type as D.U.T.
Fig 23b. Switching Time Waveforms
Id Vds Vgs
50KΩ 12V .2µF .3µF
D.U.T. VGS
3mA
+ V - DS
Vgs(th)
IG
ID
Current Sampling Resistors
Qgs1 Qgs2
Qgd
Qgodr
www.irf.com
Fig 24a. Gate Charge Test Circuit
Fig 24b. Gate Charge Waveform
7
IRFS/SL4010PbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSG" "G GPUÃ8P9@Ã &'( 6TT@H7G@9ÃPIÃXXÃ (Ã ((& DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S
96U@Ã8P9@ `@6SÃ&Ã2Ã ((& X@@FÃ ( GDI@Ã8
25
DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S
96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69AS@@ QSP9V8UÃPQUDPI6G `@6SÃ&Ã2Ã ((& X@@FÃ ( 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRFS/SL4010PbF
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Package Outline
D2Pak (TO-263AB) Part Marking Information
UCDTÃDTÃ6IÃDSA$"TÃXDUC GPUÃ8P9@Ã'!# 6TT@H7G@9ÃPIÃXXÃ!Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅGÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S A$"T 96U@Ã8P9@ `@6SÃÃ2Ã! X@@FÃ! GDI@ÃG
25
DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ A$"T
Q6SUÃIVH7@S 96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69ÃÃAS@@ QSP9V8UÃPQUDPI6G `@6SÃÃ2Ã! X@@FÃ! 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@
9
www.irf.com
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
IRFS/SL4010PbF
D2Pak (TO-263AB) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153)
1.60 (.063) 1.50 (.059)
0.368 (.0145) 0.342 (.0135)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
11.60 (.457) 11.40 (.449)
15.42 (.609) 15.22 (.601)
24.30 (.957) 23.90 (.941)
TRL
10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178)
FEED DIRECTION
13.50 (.532) 12.80 (.504)
27.40 (1.079) 23.90 (.941)
4
330.00 (14.173) MAX.
60.00 (2.362) MIN.
NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039) 24.40 (.961) 3
30.40 (1.197) MAX. 4
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
10
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/2008
www.irf.com