0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFS4115PBF

IRFS4115PBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRFS4115PBF - HEXFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRFS4115PBF 数据手册
PD - 96198 IRFS4115PbF IRFSL4115PbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits G D HEXFET® Power MOSFET VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited) 150V 10.3m: 12.1m: 99A 195A Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free c S D D S G G D S D2Pak IRFS4115PbF TO-262 IRFSL4115PbF G D S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw Max. 99 70 195 396 375 2.5 ± 20 18 -55 to + 175 300 10lb in (1.1N m) 220 See Fig. 14, 15, 22a, 22b, ™ ™ Units A d W W/°C V V/ns f °C x x Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Ãd e Thermal Resistance Symbol RθJC RθJA Junction-to-Case Junction-to-Ambient g mJ A mJ kl jk Parameter Typ. ––– ––– Max. 0.4 40 Units °C/W www.irf.com 1 11/11/08 IRFS/SL4115PbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS IGSS RG Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance Min. Typ. Max. Units 150 ––– ––– 3.0 ––– ––– ––– ––– ––– ––– 0.18 10.3 ––– ––– ––– ––– ––– 2.3 ––– ––– 12.1 5.0 20 250 100 -100 ––– Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 3.5mA mΩ VGS = 10V, ID = 62A V VDS = VGS, ID = 250µA µA VDS = 150V, VGS = 0V VDS = 150V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V g d Ω Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Min. Typ. Max. Units ––– 77 28 26 51 18 73 41 39 5270 490 105 460 530 ––– 120 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Conditions VDS = 50V, ID = 62A ID = 62A VDS = 75V VGS = 10V ID = 62A, VDS =0V, VGS = 10V VDD = 98V ID = 62A RG = 2.2Ω VGS = 10V VGS = 0V VDS = 50V 97 ––– ––– ––– ––– Turn-On Delay Time ––– Rise Time ––– Turn-Off Delay Time ––– Fall Time ––– Input Capacitance ––– Output Capacitance ––– Reverse Transfer Capacitance ––– Effective Output Capacitance (Energy Related) ––– Effective Output Capacitance (Time Related) ––– g g ns pF ƒ = 1.0 MHz, See Fig. 5 VGS = 0V, VDS = 0V to 120V VGS = 0V, VDS = 0V to 120V Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton i, See Fig. 11 h D Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Min. Typ. Max. Units ––– ––– ––– ––– 99 396 A A Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 62A, VGS = 0V TJ = 25°C VR = 130V, IF = 62A TJ = 125°C TJ = 25°C di/dt = 100A/µs TJ = 125°C TJ = 25°C Ãd Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time ––– ––– 1.3 V ––– 86 ––– ns ––– 110 ––– ––– 300 ––– nC ––– 450 ––– ––– 6.5 ––– A Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) g S g Notes:  Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) ‚ Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.11mH RG = 25Ω, IAS = 62A, VGS =10V. Part not recommended for use above this value . „ ISD ≤ 62A, di/dt ≤ 1040A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. … Pulse width ≤ 400µs; duty cycle ≤ 2%. † Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . ‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom Š RθJC value shown is at time zero Coss while VDS is rising from 0 to 80% VDSS. mended footprint and soldering techniques refer to application note #AN-994. ‰ Rθ is measured at TJ approximately 90°C 2 www.irf.com IRFS/SL4115PbF 1000 TOP VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V 1000 TOP VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V ID, Drain-to-Source Current (A) 100 BOTTOM ID, Drain-to-Source Current (A) 100 BOTTOM 10 5.0V 10 1 5.0V 0.1 0.1 1 ≤60µs PULSE WIDTH Tj = 25°C 1 100 0.1 1 10 ≤60µs PULSE WIDTH Tj = 175°C 10 100 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 Fig 2. Typical Output Characteristics 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 100 T J = 175°C 2.5 ID = 62A VGS = 10V 2.0 10 T J = 25°C 1.5 1 VDS = 50V ≤60µs PULSE WIDTH 0.1 2 4 6 8 10 12 14 16 1.0 0.5 -60 -40 -20 0 20 40 60 80 100 120140160 180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 100000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd Fig 4. Normalized On-Resistance vs. Temperature 14.0 VGS, Gate-to-Source Voltage (V) ID= 62A 12.0 10.0 8.0 6.0 4.0 2.0 0.0 10000 C, Capacitance (pF) VDS= 120V VDS= 75V VDS= 30V Ciss 1000 Coss Crss 100 10 1 10 100 1000 VDS, Drain-to-Source Voltage (V) 0 20 40 60 80 100 QG, Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRFS/SL4115PbF 1000 10000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 T J = 175°C ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 100µsec 100 DC 10msec 10 Tc = 25°C Tj = 175°C Single Pulse 1 1 10 100 1000 1msec 10 T J = 25°C 1 VGS = 0V 0.1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VSD, Source-to-Drain Voltage (V) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 120 100 ID, Drain Current (A) Fig 8. Maximum Safe Operating Area 200 Id = 3.5mA 190 180 170 160 150 140 -60 -40 -20 0 20 40 60 80 100 120140 160180 T J , Temperature ( °C ) VDS, Drain-to-Source Voltage (V) 80 60 40 20 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature 6.0 EAS , Single Pulse Avalanche Energy (mJ) Fig 10. Drain-to-Source Breakdown Voltage 900 800 700 600 500 400 300 200 100 0 ID TOP 10A 22A BOTTOM 62A 5.0 4.0 Energy (µJ) 3.0 2.0 1.0 0.0 -20 0 20 40 60 80 100 120 140 160 25 50 75 100 125 150 175 Fig 11. Typical COSS Stored Energy VDS, Drain-to-Source Voltage (V) Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent 4 www.irf.com IRFS/SL4115PbF 1 Thermal Response ( Z thJC ) °C/W D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 τJ τJ τ1 0.01 R1 R1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 τ1 τ2 Ri (°C/W) τi (sec) 0.0500 0.000052 0.1461 0.000468 0.2041 0.004702 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi /Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 0.0001 1E-006 1E-005 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Duty Cycle = Single Pulse Avalanche Current (A) 100 0.01 10 0.05 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse) 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 tav (sec) 1.0E-03 1.0E-02 1.0E-01 Fig 14. Typical Avalanche Current vs.Pulsewidth 250 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 62A Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) EAR , Avalanche Energy (mJ) 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFS/SL4115PbF 6.0 VGS(th) , Gate threshold Voltage (V) 50 IF = 42A V R = 130V TJ = 25°C TJ = 125°C 5.0 40 3.0 ID = 250µA ID = 1.0mA ID = 1.0A IRR (A) 4.0 30 20 2.0 10 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 TJ , Temperature ( °C ) 0 0 200 400 600 800 1000 diF /dt (A/µs) Fig 16. Threshold Voltage vs. Temperature 50 IF = 62A V R = 130V TJ = 25°C TJ = 125°C QRR (A) Fig. 17 - Typical Recovery Current vs. dif/dt 2500 IF = 42A V R = 130V TJ = 25°C TJ = 125°C 40 2000 IRR (A) 30 1500 20 1000 10 500 0 0 200 400 600 800 1000 diF /dt (A/µs) 0 0 200 400 600 800 1000 diF /dt (A/µs) Fig. 18 - Typical Recovery Current vs. dif/dt 3000 IF = 62A V R = 130V TJ = 25°C TJ = 125°C Fig. 19 - Typical Stored Charge vs. dif/dt 2400 QRR (A) 1800 1200 600 0 0 200 400 600 800 1000 diF /dt (A/µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFS/SL4115PbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit VDS VGS RG RD Fig 22b. Unclamped Inductive Waveforms VDS 90% D.U.T. + - VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 10% VGS td(on) tr t d(off) tf Fig 23a. Switching Time Test Circuit Current Regulator Same Type as D.U.T. Fig 23b. Switching Time Waveforms Id Vds Vgs 50KΩ 12V .2µF .3µF D.U.T. VGS 3mA + V - DS Vgs(th) IG ID Current Sampling Resistors Qgs1 Qgs2 Qgd Qgodr www.irf.com Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform 7 IRFS/SL4115PbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information UCDTÃDTÃ6IÃDSA$"TÃXDUC GPUÃ8P9@Ã'!# 6TT@H7G@9ÃPIÃXXÃ!Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅGÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S A$"T 96U@Ã8P9@ `@6SÃÃ2Ã! X@@FÃ! GDI@ÃG 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ A$"T Q6SUÃIVH7@S 96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69ÃÃAS@@ QSP9V8UÃPQUDPI6G `@6SÃÃ2Ã! X@@FÃ! 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ www.irf.com Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 IRFS/SL4115PbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSG" "G GPUÃ8P9@à &'( 6TT@H7G@9ÃPIÃXXà (à ((& DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ `@6SÃ&Ã2à ((& X@@Fà ( GDI@Ã8 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69AS@@ QSP9V8UÃPQUDPI6G `@6SÃ&Ã2à ((& X@@Fà ( 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ www.irf.com Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 IRFS/SL4115PbF D2Pak (TO-263AB) Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. 10 IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 11/2008 www.irf.com
IRFS4115PBF 价格&库存

很抱歉,暂时无法提供与“IRFS4115PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货