0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFS4310PBF

IRFS4310PBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRFS4310PBF - HEXFET®Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRFS4310PBF 数据手册
PD - 14275D IRFB4310PbF IRFS4310PbF IRFSL4310PbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits G HEXFET® Power MOSFET D Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free S VDSS RDS(on) typ. max. ID 100V 5.6m: 7.0m: 130A S D G TO-220AB IRFB4310PbF S D G D2Pak IRFS4310PbF S D G TO-262 IRFSL4310PbF Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dV/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Max. 130 92 d ™ ™ Units A 550 300 2.0 ± 20 14 -55 to + 175 300 10lb in (1.1N m) W W/°C V V/ns °C Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw f x x Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Ù e 980 See Fig. 14, 15, 22a, 22b, mJ A mJ Repetitive Avalanche Energy g Thermal Resistance Symbol RθJC RθCS RθJA RθJA Junction-to-Case k Parameter Typ. ––– 0.50 ––– ––– Max. 0.50 ––– 62 40 Units °C/W Case-to-Sink, Flat Greased Surface , TO-220 Junction-to-Ambient, TO-220 k Junction-to-Ambient (PCB Mount) , D Pak 2 jk www.irf.com 1 01/31/06 IRF/B/S/SL4310PbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS IGSS RG Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Input Resistance Min. Typ. Max. Units 100 ––– ––– ––– 0.064 ––– ––– 5.6 7.0 2.0 ––– 4.0 ––– ––– 20 ––– ––– 250 ––– ––– 200 ––– ––– -200 ––– 1.4 ––– Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 75A V VDS = VGS, ID = 250µA µA VDS = 100V, VGS = 0V VDS = 100V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω f = 1MHz, open drain g d Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) Min. Typ. Max. Units 160 ––– ––– 170 ––– 46 ––– 62 ––– 26 ––– 110 ––– 68 ––– 78 ––– 7670 ––– 540 ––– 280 ––– 650 ––– 720.1 ––– 250 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Conditions VDS = 50V, ID = 75A ID = 75A VDS = 80V VGS = 10V VDD = 65V ID = 75A RG = 2.6Ω VGS = 10V VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 80V VGS = 0V, VDS = 0V to 80V g g ns pF h i j, See Fig.11 h, See Fig. 5 Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time Min. Typ. Max. Units ––– ––– ––– 130 ––– ™ Conditions MOSFET symbol showing the integral reverse G S D A Ãdi 550 p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 75A, VGS = 0V VR = 85V, ––– 45 68 ns TJ = 25°C TJ = 125°C IF = 75A ––– 55 83 di/dt = 100A/µs ––– 82 120 nC TJ = 25°C TJ = 125°C ––– 120 180 ––– 3.3 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) g g Notes:  Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A ‚ Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.35mH RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use above this value. „ ISD ≤ 75A, di/dt ≤ 550A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. … Pulse width ≤ 400µs; duty cycle ≤ 2%. † Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. ‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. Coss while VDS is rising from 0 to 80% VDSS. ‰ Rθ is measured at TJ approximately 90°C. 2 www.irf.com IRF/B/S/SL4310PbF 1000 TOP 1000 ID, Drain-to-Source Current (A) 100 BOTTOM ID, Drain-to-Source Current (A) VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V TOP BOTTOM VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V 100 10 4.5V 1 0.1 1 ≤ 60µs PULSE WIDTH Tj = 25°C 10 10 100 0.1 1 4.5V ≤ 60µs PULSE WIDTH Tj = 175°C 10 100 VDS , Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 Fig 2. Typical Output Characteristics 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current(Α) ID = 75A VGS = 10V 2.5 100 TJ = 175°C 2.0 1.5 10 TJ = 25°C VDS = 50V 1.0 ≤ 60µs PULSE WIDTH 1 3.0 4.0 5.0 6.0 7.0 8.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 VGS, Gate-to-Source Voltage (V) TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics 12000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd 8000 Fig 4. Normalized On-Resistance vs. Temperature 20 VGS, Gate-to-Source Voltage (V) ID= 75A VDS = 80V VDS= 50V VDS= 20V 10000 16 C, Capacitance (pF) Ciss 12 6000 8 4000 4 2000 Coss Crss 1 10 100 0 0 0 40 80 120 160 200 240 280 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRF/B/S/SL4310PbF 1000.0 10000 TJ = 175°C ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS (on) 1000 100.0 100 100µsec 10.0 TJ = 25°C 1.0 10 1 VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Tc = 25°C Tj = 175°C Single Pulse 1 10 1msec 10msec DC 100 1000 0.1 VSD , Source-to-Drain Voltage (V) VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage V(BR)DSS , Drain-to-Source Breakdown Voltage 140 120 ID, Drain Current (A) 120 Fig 8. Maximum Safe Operating Area Limited By Package 115 100 80 60 40 20 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) 110 105 100 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature EAS, Single Pulse Avalanche Energy (mJ) 4.0 3.5 3.0 Fig 10. Drain-to-Source Breakdown Voltage 2400 2000 ID 12A 17A BOTTOM 75A TOP 1600 Energy (µJ) 2.5 2.0 1.5 1.0 0.5 0.0 0 20 40 60 80 100 120 1200 800 400 0 25 50 75 100 125 150 175 VDS, Drain-to-Source Voltage (V) Starting TJ, Junction Temperature (°C) Fig 11. Typical COSS Stored Energy Fig 12. Maximum Avalanche Energy Vs. DrainCurrent 4 www.irf.com IRF/B/S/SL4310PbF 1 D = 0.50 Thermal Response ( ZthJC ) 0.1 0.20 0.10 0.05 τJ R1 R1 τJ τ1 τ2 R2 R2 τC τ1 τ2 τ 0.01 0.02 0.01 Ri (°C/W) τi (sec) 0.1962 0.00117 0.2542 0.016569 0.001 Ci= τi/Ri Ci= i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Duty Cycle = Single Pulse 0.01 Avalanche Current (A) 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse) 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth 1000 EAR , Avalanche Energy (mJ) 800 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 75A 600 400 200 0 25 50 75 100 125 150 175 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max) is exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Starting TJ , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRF/B/S/SL4310PbF 5.0 20 VGS(th) Gate threshold Voltage (V) 4.0 ID = 1.0A ID = 1.0mA ID = 250µA 16 IRRM - (A) 12 3.0 8 IF = 30A VR = 85V TJ = 125°C TJ = 25°C 2.0 4 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 0 100 200 300 400 500 600 700 800 900 1000 TJ , Temperature ( °C ) dif / dt - (A / µs) Fig 16. Threshold Voltage Vs. Temperature 20 Fig. 17 - Typical Recovery Current vs. dif/dt 500 16 400 QRR - (nC) IRRM - (A) 12 300 8 IF = 45A VR = 85V TJ = 125°C TJ = 25°C 0 100 200 300 400 500 600 700 800 900 1000 200 IF = 30A VR = 85V TJ = 125°C TJ = 25°C 0 100 200 300 400 500 600 700 800 900 1000 4 100 dif / dt - (A / µs) dif / dt - (A / µs) Fig. 18 - Typical Recovery Current vs. dif/dt 500 Fig. 19 - Typical Stored Charge vs. dif/dt 400 QRR - (nC) 300 200 IF = 45A VR = 85V TJ = 125°C TJ = 25°C 0 100 200 300 400 500 600 700 800 900 1000 100 dif / dt - (A / µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRF/B/S/SL4310PbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit LD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% + VDD D.U.T 10% VGS Pulse Width < 1µs Duty Factor < 0.1% VGS td(on) tr td(off) tf Fig 23a. Switching Time Test Circuit Fig 23b. Switching Time Waveforms Id Vds Vgs L VCC 0 DUT 1K Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform www.irf.com 7 IRF/B/S/SL4310PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSA  à GPUÃ8P9@à &'( 6TT@H7G@9ÃPIÃXXà (Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å I‚‡r)ÃÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚ vqvph‡r†ÃÅGrhqÃÃA…rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ `@6SÃÃ2Ã! X@@Fà ( GDI@Ã8 TO-220AB packages are not recommended for Surface Mount Application. 8 www.irf.com IRF/B/S/SL4310PbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSG" "G GPUÃ8P9@à &'( 6TT@H7G@9ÃPIÃXXà (à ((& DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ `@6SÃ&Ã2à ((& X@@Fà ( GDI@Ã8 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69AS@@ QSP9V8UÃPQUDPI6G `@6SÃ&Ã2à ((& X@@Fà ( 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ www.irf.com 9 IRF/B/S/SL4310PbF Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Package Outline D2Pak (TO-263AB) Part Marking Information UCDTÃDTÃ6IÃDSA$"TÃXDUC GPUÃ8P9@Ã'!# 6TT@H7G@9ÃPIÃXXÃ!Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅGÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S A$"T 96U@Ã8P9@ `@6SÃÃ2Ã! X@@FÃ! GDI@ÃG 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ 10 Q6SUÃIVH7@S A$"T 96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69ÃÃAS@@ QSP9V8UÃPQUDPI6G `@6SÃÃ2Ã! X@@FÃ! 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ www.irf.com IRF/B/S/SL4310PbF D2Pak (TO-263AB) Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 01/06 www.irf.com 11 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/
IRFS4310PBF 价格&库存

很抱歉,暂时无法提供与“IRFS4310PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货