PD - 97115A
IRFB4310ZPbF IRFS4310ZPbF IRFSL4310ZPbF
HEXFET® Power MOSFET
Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free
D
G S
D
VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited)
D D
100V 4.8m: 6.0m: 127A c 75A
G
D
S G
D
S G
D
S
TO-220AB IRFB4310ZPbF
G
D2Pak IRFS4310ZPbF
D
TO-262 IRFSL4310ZPbF
S
G ate
Drain
Source
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG
Parameter
Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current d Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery f Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw
Max.
127c 90c 75 560 250 1.7 ± 20 18 -55 to + 175 300 10lbxin (1.1Nxm) 130 See Fig. 14, 15, 22a, 22b,
Units
A
W W/°C V V/ns °C
Avalanche Characteristics
EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy e Avalanche Current c Repetitive Avalanche Energy g mJ A mJ
Thermal Resistance
Symbol
RθJC RθCS RθJA RθJA
Parameter
Junction-to-Case k Case-to-Sink, Flat Greased Surface , TO-220 Junction-to-Ambient, TO-220 k Junction-to-Ambient (PCB Mount) , D Pak jk
2
Typ.
––– 0.50 ––– –––
Max.
0.6 ––– 62 40
Units
°C/W
www.irf.com
1
4/27/07
IRFB/S/SL4310ZPbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
V(BR)DSS RDS(on) VGS(th) IDSS IGSS RG
Parameter
Drain-to-Source Breakdown Voltage Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance
Min. Typ. Max. Units
100 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– 0.11 4.8 ––– ––– ––– ––– ––– 0.7 ––– ––– 6.0 4.0 20 250 100 -100 ––– Ω nA V
Conditions
VGS = 0V, ID = 250μA
ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient
V/°C Reference to 25°C, ID = 5mAd mΩ VGS = 10V, ID = 75A g V μA VDS = VGS, ID = 150μA VDS = 100V, VGS = 0V VDS = 80V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss
Parameter
Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
Min. Typ. Max. Units
150 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 120 29 35 85 20 60 55 57 6860 490 220 570 920 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– pF ns ––– 170 ––– S nC ID = 75A VDS =50V VGS = 10V g
Conditions
VDS = 50V, ID = 75A
ID = 75A, VDS =0V, VGS = 10V VDD = 65V ID = 75A RG = 2.7Ω VGS = 10V g VGS = 0V VDS = 50V ƒ = 1.0MHz, See Fig. 5 VGS = 0V, VDS = 0V to 80V i, See Fig. 11 VGS = 0V, VDS = 0V to 80V h
Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– Coss eff. (TR) Effective Output Capacitance (Time Related)h –––
Diode Characteristics
Symbol
IS ISM VSD trr Qrr IRRM ton
Parameter
Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) d Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time
Min. Typ. Max. Units
––– ––– ––– ––– ––– ––– ––– ––– ––– 127c ––– ––– 40 49 58 89 2.5 ––– A nC 560 1.3 A A V ns
Conditions
MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 75A, VGS = 0V g TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C VR = 85V, IF = 75A di/dt = 100A/μs g
G S D
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes: Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.047mH RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use above this value. ISD ≤ 75A, di/dt ≤ 600A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
Pulse width ≤ 400μs; duty cycle ≤ 2%.
Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as When mounted on 1" square PCB (FR-4 or G-10 Material). For recom Rθ is measured at TJ approximately 90°C
Coss while VDS is rising from 0 to 80% VDSS. mended footprint and soldering techniques refer to application note #AN-994.
2
www.irf.com
IRFB/S/SL4310ZPbF
1000
TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V
1000
TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
BOTTOM
100
10
4.5V
4.5V ≤ 60μs PULSE WIDTH Tj = 25°C
1 0.1 1 10 100
≤ 60μs PULSE WIDTH Tj = 175°C
10 0.1 1 10 100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
1000
2.5
Fig 2. Typical Output Characteristics
RDS(on) , Drain-to-Source On Resistance
ID = 75A
2.0
ID, Drain-to-Source Current(Α)
VGS = 10V
100
TJ = 175°C
10
(Normalized)
1.5
TJ = 25°C
1
1.0
VDS = 50V
0.1 2.0 3.0 4.0 5.0
≤ 60μs PULSE WIDTH
6.0 7.0 8.0
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
VGS, Gate-to-Source Voltage (V)
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
12000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd
Fig 4. Normalized On-Resistance vs. Temperature
20
VGS, Gate-to-Source Voltage (V)
ID= 75A VDS = 80V VDS= 50V VDS= 20V
10000
16
C, Capacitance (pF)
8000
Ciss
12
6000
8
4000
2000
Coss Crss
4
0 1 10 100
0 0 40 80 120 160 200 QG Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
www.irf.com
3
IRFB/S/SL4310ZPbF
1000
10000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
100
TJ = 175°C
1000
OPERATION IN THIS AREA LIMITED BY R DS (on)
100
1msec
100μsec
10
TJ = 25°C
10
10msec
1
1
VGS = 0V
0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Tc = 25°C Tj = 175°C Single Pulse 0.1 1
DC 10 100
0.1
VSD, Source-to-Drain Voltage (V)
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
V(BR)DSS , Drain-to-Source Breakdown Voltage
Fig 8. Maximum Safe Operating Area
130
140 LIMITED BY PACKAGE 120
ID, Drain Current (A)
ID = 5mA
120
100 80 60 40 20 0 25 50 75 100 125 150 175 TC, Case Temperature (°C)
110
100
90 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 9. Maximum Drain Current vs. Case Temperature
3.0
Fig 10. Drain-to-Source Breakdown Voltage
600
EAS, Single Pulse Avalanche Energy (mJ)
2.5
500
ID 11A 19A BOTTOM 75A
TOP
2.0
400
Energy (μJ)
1.5
300
1.0
200
0.5
100
0.0 0 20 40 60 80 100
0 25 50 75 100 125 150 175
VDS, Drain-to-Source Voltage (V)
Starting TJ, Junction Temperature (°C)
Fig 11. Typical COSS Stored Energy
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
4
www.irf.com
IRFB/S/SL4310ZPbF
1
D = 0.50
Thermal Response ( Z thJC )
0.1
0.20 0.10 0.05 0.02
τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ1 τ2 τ3 τ4 τ4 τ
0.01
0.01 SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi/Ri Ci i/Ri
Ri (°C/W) 0.018756 0.159425 0.320725 0.101282
τι (sec)
0.000373 0.000734 0.005665 0.115865
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.0001 0.001 0.01 0.1
0.001 1E-006 1E-005
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
100
Duty Cycle = Single Pulse 0.01
10
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Δ Tj = 150°C and Tstart =25°C (Single Pulse)
Avalanche Current (A)
0.05 0.10
1
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C.
0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
140 120
EAR , Avalanche Energy (mJ)
TOP Single Pulse BOTTOM 1% Duty Cycle ID = 75A
100 80 60 40 20 0 25 50 75 100 125 150 175
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Starting TJ , Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFB/S/SL4310ZPbF
4.5
24
VGS(th) Gate threshold Voltage (V)
4.0 3.5 3.0 2.5 2.0 1.5 1.0 -75 -50 -25 0 25 50 75
ID = 1.0A ID = 1.0mA ID = 250μA ID = 150μA
IRRM - (A)
20
16
12
8
4
IF = 30A VR = 85V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000
0
100 125 150 175
TJ , Temperature ( °C )
dif / dt - (A / μs)
Fig 16. Threshold Voltage Vs. Temperature
24
Fig. 17 - Typical Recovery Current vs. dif/dt
600
20
500
16
400
IRRM - (A)
QRR - (nC)
12
300
8
200
IF = 45A VR = 85V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000
4
100
IF = 30A VR = 85V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000
0
0
dif / dt - (A / μs)
dif / dt - (A / μs)
Fig. 18 - Typical Recovery Current vs. dif/dt
600
Fig. 19 - Typical Stored Charge vs. dif/dt
500
400
QRR - (nC)
300
200
100
IF = 45A VR = 85V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000
0
dif / dt - (A / μs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFB/S/SL4310ZPbF
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
***
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
*
• • • •
dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
**
+ -
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple ≤ 5%
ISD
* Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel
*** VGS = 5V for Logic Level Devices
Fig 21. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
V(BR)DSS
15V
tp
DRIVER
VDS
L
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
A
0.01Ω
I AS
Fig 22a. Unclamped Inductive Test Circuit
RD
Fig 22b. Unclamped Inductive Waveforms
VDS VGS RG 10V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
90%
D.U.T.
+
VDS
-VDD
10%
VGS
td(on) tr td(off) tf
Fig 23a. Switching Time Test Circuit
Fig 23b. Switching Time Waveforms
Id Vds Vgs
L
0
DUT
20K 1K
S
VCC
Vgs(th)
Qgodr
Qgd
Qgs2 Qgs1
Fig 24a. Gate Charge Test Circuit
www.irf.com
Fig 24b. Gate Charge Waveform
7
IRFB/S/SL4310ZPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 2000 IN T HE AS S EMBLY LINE "C" Note: "P" in ass embly line pos ition indicates "Lead - Free" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER
DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C
TO-220AB packages are not recommended for Surface Mount Application.
8
www.irf.com
IRFB/S/SL4310ZPbF
TO-262 Package Outline (Dimensions are shown in millimeters (inches))
TO-262 Part Marking Information
EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" INT ERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER
DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C
OR
INT ERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER
DAT E CODE P = DES IGNATES LEAD-FREE PRODUCT (OPT IONAL) YEAR 7 = 1997 WEEK 19 A = AS S EMBLY S ITE CODE
www.irf.com
9
IRFB/S/SL4310ZPbF
D2Pak Package Outline (Dimensions are shown in millimeters (inches))
D2Pak Part Marking Information
T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L
PART NUMBER F530S DAT E CODE
T HIS IS AN IRF530S WIT H LOT CODE For GB Production 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L"
INT ERNAT IONAL RECT IFIER LOGO LOT CODE
10
www.irf.com
IRFB/S/SL4310ZPbF
D2Pak Tape & Reel Information
TRR
1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153)
1.60 (.063) 1.50 (.059)
0.368 (.0145) 0.342 (.0135)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
11.60 (.457) 11.40 (.449)
15.42 (.609) 15.22 (.601)
24.30 (.957) 23.90 (.941)
TRL
10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178)
FEED DIRECTION
13.50 (.532) 12.80 (.504)
27.40 (1.079) 23.90 (.941)
4
330.00 (14.173) MAX.
60.00 (2.362) MIN.
NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039) 24.40 (.961) 3
30.40 (1.197) MAX. 4
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/07
www.irf.com
11