0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFS4310ZPBF

IRFS4310ZPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRFS4310ZPBF - HEXFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRFS4310ZPBF 数据手册
PD - 97115A IRFB4310ZPbF IRFS4310ZPbF IRFSL4310ZPbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free D G S D VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited) D D 100V 4.8m: 6.0m: 127A c 75A G D S G D S G D S TO-220AB IRFB4310ZPbF G D2Pak IRFS4310ZPbF D TO-262 IRFSL4310ZPbF S G ate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current d Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery f Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw Max. 127c 90c 75 560 250 1.7 ± 20 18 -55 to + 175 300 10lbxin (1.1Nxm) 130 See Fig. 14, 15, 22a, 22b, Units A W W/°C V V/ns °C Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy e Avalanche Current c Repetitive Avalanche Energy g mJ A mJ Thermal Resistance Symbol RθJC RθCS RθJA RθJA Parameter Junction-to-Case k Case-to-Sink, Flat Greased Surface , TO-220 Junction-to-Ambient, TO-220 k Junction-to-Ambient (PCB Mount) , D Pak jk 2 Typ. ––– 0.50 ––– ––– Max. 0.6 ––– 62 40 Units °C/W www.irf.com 1 4/27/07 IRFB/S/SL4310ZPbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS RDS(on) VGS(th) IDSS IGSS RG Parameter Drain-to-Source Breakdown Voltage Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance Min. Typ. Max. Units 100 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– 0.11 4.8 ––– ––– ––– ––– ––– 0.7 ––– ––– 6.0 4.0 20 250 100 -100 ––– Ω nA V Conditions VGS = 0V, ID = 250μA ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient V/°C Reference to 25°C, ID = 5mAd mΩ VGS = 10V, ID = 75A g V μA VDS = VGS, ID = 150μA VDS = 100V, VGS = 0V VDS = 80V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units 150 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 120 29 35 85 20 60 55 57 6860 490 220 570 920 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– pF ns ––– 170 ––– S nC ID = 75A VDS =50V VGS = 10V g Conditions VDS = 50V, ID = 75A ID = 75A, VDS =0V, VGS = 10V VDD = 65V ID = 75A RG = 2.7Ω VGS = 10V g VGS = 0V VDS = 50V ƒ = 1.0MHz, See Fig. 5 VGS = 0V, VDS = 0V to 80V i, See Fig. 11 VGS = 0V, VDS = 0V to 80V h Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– Coss eff. (TR) Effective Output Capacitance (Time Related)h ––– Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) d Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– ––– 127c ––– ––– 40 49 58 89 2.5 ––– A nC 560 1.3 A A V ns Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 75A, VGS = 0V g TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C VR = 85V, IF = 75A di/dt = 100A/μs g G S D Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes:  Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A ‚ Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.047mH RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use above this value. „ ISD ≤ 75A, di/dt ≤ 600A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. … Pulse width ≤ 400μs; duty cycle ≤ 2%. † Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. ‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom ‰ Rθ is measured at TJ approximately 90°C Coss while VDS is rising from 0 to 80% VDSS. mended footprint and soldering techniques refer to application note #AN-994. 2 www.irf.com IRFB/S/SL4310ZPbF 1000 TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V 1000 TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V ID, Drain-to-Source Current (A) 100 BOTTOM ID, Drain-to-Source Current (A) BOTTOM 100 10 4.5V 4.5V ≤ 60μs PULSE WIDTH Tj = 25°C 1 0.1 1 10 100 ≤ 60μs PULSE WIDTH Tj = 175°C 10 0.1 1 10 100 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 2.5 Fig 2. Typical Output Characteristics RDS(on) , Drain-to-Source On Resistance ID = 75A 2.0 ID, Drain-to-Source Current(Α) VGS = 10V 100 TJ = 175°C 10 (Normalized) 1.5 TJ = 25°C 1 1.0 VDS = 50V 0.1 2.0 3.0 4.0 5.0 ≤ 60μs PULSE WIDTH 6.0 7.0 8.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 VGS, Gate-to-Source Voltage (V) TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics 12000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd Fig 4. Normalized On-Resistance vs. Temperature 20 VGS, Gate-to-Source Voltage (V) ID= 75A VDS = 80V VDS= 50V VDS= 20V 10000 16 C, Capacitance (pF) 8000 Ciss 12 6000 8 4000 2000 Coss Crss 4 0 1 10 100 0 0 40 80 120 160 200 QG Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRFB/S/SL4310ZPbF 1000 10000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 100 TJ = 175°C 1000 OPERATION IN THIS AREA LIMITED BY R DS (on) 100 1msec 100μsec 10 TJ = 25°C 10 10msec 1 1 VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 DC 10 100 0.1 VSD, Source-to-Drain Voltage (V) VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage V(BR)DSS , Drain-to-Source Breakdown Voltage Fig 8. Maximum Safe Operating Area 130 140 LIMITED BY PACKAGE 120 ID, Drain Current (A) ID = 5mA 120 100 80 60 40 20 0 25 50 75 100 125 150 175 TC, Case Temperature (°C) 110 100 90 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature 3.0 Fig 10. Drain-to-Source Breakdown Voltage 600 EAS, Single Pulse Avalanche Energy (mJ) 2.5 500 ID 11A 19A BOTTOM 75A TOP 2.0 400 Energy (μJ) 1.5 300 1.0 200 0.5 100 0.0 0 20 40 60 80 100 0 25 50 75 100 125 150 175 VDS, Drain-to-Source Voltage (V) Starting TJ, Junction Temperature (°C) Fig 11. Typical COSS Stored Energy Fig 12. Maximum Avalanche Energy Vs. DrainCurrent 4 www.irf.com IRFB/S/SL4310ZPbF 1 D = 0.50 Thermal Response ( Z thJC ) 0.1 0.20 0.10 0.05 0.02 τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ1 τ2 τ3 τ4 τ4 τ 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi/Ri Ci i/Ri Ri (°C/W) 0.018756 0.159425 0.320725 0.101282 τι (sec) 0.000373 0.000734 0.005665 0.115865 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 0.001 1E-006 1E-005 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Duty Cycle = Single Pulse 0.01 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Δ Tj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth 140 120 EAR , Avalanche Energy (mJ) TOP Single Pulse BOTTOM 1% Duty Cycle ID = 75A 100 80 60 40 20 0 25 50 75 100 125 150 175 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Starting TJ , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFB/S/SL4310ZPbF 4.5 24 VGS(th) Gate threshold Voltage (V) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 -75 -50 -25 0 25 50 75 ID = 1.0A ID = 1.0mA ID = 250μA ID = 150μA IRRM - (A) 20 16 12 8 4 IF = 30A VR = 85V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 0 100 125 150 175 TJ , Temperature ( °C ) dif / dt - (A / μs) Fig 16. Threshold Voltage Vs. Temperature 24 Fig. 17 - Typical Recovery Current vs. dif/dt 600 20 500 16 400 IRRM - (A) QRR - (nC) 12 300 8 200 IF = 45A VR = 85V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 4 100 IF = 30A VR = 85V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 0 0 dif / dt - (A / μs) dif / dt - (A / μs) Fig. 18 - Typical Recovery Current vs. dif/dt 600 Fig. 19 - Typical Stored Charge vs. dif/dt 500 400 QRR - (nC) 300 200 100 IF = 45A VR = 85V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 0 dif / dt - (A / μs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFB/S/SL4310ZPbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer *** D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG * • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD ** + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel *** VGS = 5V for Logic Level Devices Fig 21. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit RD Fig 22b. Unclamped Inductive Waveforms VDS VGS RG 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 90% D.U.T. + VDS -VDD 10% VGS td(on) tr td(off) tf Fig 23a. Switching Time Test Circuit Fig 23b. Switching Time Waveforms Id Vds Vgs L 0 DUT 20K 1K S VCC Vgs(th) Qgodr Qgd Qgs2 Qgs1 Fig 24a. Gate Charge Test Circuit www.irf.com Fig 24b. Gate Charge Waveform 7 IRFB/S/SL4310ZPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 2000 IN T HE AS S EMBLY LINE "C" Note: "P" in ass embly line pos ition indicates "Lead - Free" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C TO-220AB packages are not recommended for Surface Mount Application. 8 www.irf.com IRFB/S/SL4310ZPbF TO-262 Package Outline (Dimensions are shown in millimeters (inches)) TO-262 Part Marking Information EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" INT ERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C OR INT ERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE P = DES IGNATES LEAD-FREE PRODUCT (OPT IONAL) YEAR 7 = 1997 WEEK 19 A = AS S EMBLY S ITE CODE www.irf.com 9 IRFB/S/SL4310ZPbF D2Pak Package Outline (Dimensions are shown in millimeters (inches)) D2Pak Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L PART NUMBER F530S DAT E CODE T HIS IS AN IRF530S WIT H LOT CODE For GB Production 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO LOT CODE 10 www.irf.com IRFB/S/SL4310ZPbF D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/07 www.irf.com 11
IRFS4310ZPBF 价格&库存

很抱歉,暂时无法提供与“IRFS4310ZPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货