PD - 96893A
IRFB3207 IRFS3207 IRFSL3207
Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits Benefits l Worldwide Best RDS(on) in TO-220 l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability
G S
HEXFET® Power MOSFET
D
VDSS RDS(on) typ. max. ID
75V 3.6m: 4.5m: 180A
GDS
TO-220AB IRFB3207
GDS
D2Pak IRFS3207
GDS
TO-262 IRFSL3207
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dV/dt TJ TSTG
Parameter
Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current d Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery f Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw
Max.
180c 130c 720 330 2.2 ± 20 5.8 -55 to + 175 300 10lbxin (1.1Nxm) 910 See Fig. 14, 15, 16a, 16b,
Units
A
W W/°C V V/ns °C
Avalanche Characteristics
EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy e Avalanche Current c Repetitive Avalanche Energy g mJ A mJ
Thermal Resistance
Symbol
RθJC RθCS RθJA RθJA
Parameter
Junction-to-Case k Case-to-Sink, Flat Greased Surface , TO-220 Junction-to-Ambient, TO-220 k Junction-to-Ambient (PCB Mount) , D Pak jk
2
Typ.
––– 0.50 ––– –––
Max.
0.45 ––– 62 40
Units
°C/W
www.irf.com
1
11/3/04
IRF/B/S/SL3207
Static @ TJ = 25°C (unless otherwise specified)
Symbol
V(BR)DSS
Parameter
Drain-to-Source Breakdown Voltage
Min. Typ. Max. Units
75 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– 0.69 3.6 ––– ––– ––– ––– ––– 1.2 ––– ––– 4.5 4.0 20 250 200 -200 ––– Ω nA V
Conditions
VGS = 0V, ID = 250µA
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) IDSS IGSS RG Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Input Resistance
V/°C Reference to 25°C, ID = 1mAd mΩ VGS = 10V, ID = 75A g V µA VDS = VGS, ID = 250µA VDS = 75V, VGS = 0V VDS = 75V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V f = 1MHz, open drain
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss
Parameter
Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance
Min. Typ. Max. Units
150 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 180 48 68 29 120 68 74 7600 710 390 920 1010 ––– 260 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– pF ns S nC ID = 75A VDS = 60V VGS = 10V g VDD = 48V ID = 75A RG = 2.6Ω VGS = 10V g VGS = 0V VDS = 50V ƒ = 1.0MHz
Conditions
VDS = 50V, ID = 75A
Reverse Transfer Capacitance ––– Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– Coss eff. (TR) Effective Output Capacitance (Time Related)h –––
VGS = 0V, VDS = 0V to 60V j, See Fig.11 VGS = 0V, VDS = 0V to 60V h, See Fig. 5
Diode Characteristics
Symbol
IS ISM VSD trr Qrr IRRM ton
Parameter
Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) di Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time
Min. Typ. Max. Units
––– ––– ––– ––– ––– ––– ––– ––– ––– 180c ––– ––– 42 49 65 92 2.6 720 1.3 63 74 98 140 ––– A nC V ns A
Conditions
MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 75A, VGS = 0V g VR = 64V, TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C IF = 75A di/dt = 100A/µs g
G S D
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes: Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.33mH RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use above this value. ISD ≤ 75A, di/dt ≤ 500A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
Pulse width ≤ 400µs; duty cycle ≤ 2%.
Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as When mounted on 1" square PCB (FR-4 or G-10 Material). For recom Rθ is measured at TJ approximately 90°C
Coss while VDS is rising from 0 to 80% VDSS. mended footprint and soldering techniques refer to application note #AN-994.
2
www.irf.com
IRF/B/S/SL3207
1000
TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V
1000
TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
BOTTOM
100
10
4.5V ≤ 60µs PULSE WIDTH Tj = 175°C
10 0.1 1 10 100
4.5V
1 0.1 1
≤ 60µs PULSE WIDTH Tj = 25°C
10 100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
1000.0
2.5
Fig 2. Typical Output Characteristics
RDS(on) , Drain-to-Source On Resistance
ID = 75A
2.0
ID, Drain-to-Source Current(Α)
TJ = 175°C
100.0
VGS = 10V
TJ = 25°C
(Normalized)
1.5
10.0
1.0
VDS = 50V
1.0 4.0 5.0 6.0 7.0
≤ 60µs PULSE WIDTH
8.0 9.0
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
VGS, Gate-to-Source Voltage (V)
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
12000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd
Fig 4. Normalized On-Resistance vs. Temperature
20 ID= 75A
VGS, Gate-to-Source Voltage (V)
VDS = 60V VDS= 38V
10000
16
C, Capacitance (pF)
8000
Ciss
12
6000
8
4000
4
2000
Coss Crss
1 10 100
0
0 0 40 80 120 160 200 240 280 QG Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
www.irf.com
3
IRF/B/S/SL3207
1000.0
10000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA LIMITED BY R DS (on)
ISD , Reverse Drain Current (A)
100.0
TJ = 175°C
1000
100
100µsec
10.0
10
1.0
TJ = 25°C
1
VGS = 0V
0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Tc = 25°C Tj = 175°C Single Pulse 1 10
1msec 10msec DC 100 1000
0.1
VSD, Source-to-Drain Voltage (V)
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
V(BR)DSS , Drain-to-Source Breakdown Voltage
Fig 8. Maximum Safe Operating Area
100
200 LIMITED BY PACKAGE 150
ID , Drain Current (A)
90
100
80
50
0 25 50 75 100 125 150 175 TC , Case Temperature (°C)
70 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 9. Maximum Drain Current vs. Case Temperature
3.0
Fig 10. Drain-to-Source Breakdown Voltage
4000
EAS, Single Pulse Avalanche Energy (mJ)
2.5
3000
ID 12A 16A BOTTOM 75A
TOP
2.0
Energy (µJ)
1.5
2000
1.0
1000
0.5
0.0 20 30 40 50 60 70 80
0 25 50 75 100 125 150 175
VDS, Drain-to-Source Voltage (V)
Starting TJ, Junction Temperature (°C)
Fig 11. Typical COSS Stored Energy
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
4
www.irf.com
IRF/B/S/SL3207
1
D = 0.50
Thermal Response ( Z thJC )
0.1
0.20 0.10 0.05 0.02 0.01
τJ R1 R1 τJ τ1 τ2 R2 R2 τC τ τ2
0.01
Ri (°C/W) τi (sec) 0.2151 0.001175 0.2350 0.017994
τ1
0.001
Ci= τi/Ri Ci i/Ri
SINGLE PULSE ( THERMAL RESPONSE )
0.0001 1E-006 1E-005 0.0001 0.001
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.01 0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
10000
Duty Cycle = Single Pulse
Avalanche Current (A)
1000
100
0.01 0.05
Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax
10
0.10
1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
1000
EAR , Avalanche Energy (mJ)
800
TOP Single Pulse BOTTOM 1% Duty Cycle ID = 75A
600
400
200
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
175
0 25 50 75 100 125 150
Starting TJ , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRF/B/S/SL3207
5.0
16
VGS(th) Gate threshold Voltage (V)
4.5 4.0 3.5 3.0 2.5 2.0 1.5 -75 -50 -25 0 25 50 75
ID = 1.0A ID = 1.0mA ID = 250µA
IRRM - (A)
14 12 10 8 6 4 2 IF = 30A VR = 64V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000
100 125 150 175
TJ , Temperature ( °C )
dif / dt - (A / µs)
Fig 16. Threshold Voltage Vs. Temperature
16 14 12 10 8 6 4 2 IF = 45A VR = 64V TJ = 125°C TJ = 25°C
Fig. 17 - Typical Recovery Current vs. dif/dt
400
300
QRR - (nC)
IRRM - (A)
200
100
IF = 30A VR = 64V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000
0 100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
dif / dt - (A / µs)
Fig. 18 - Typical Recovery Current vs. dif/dt
400
Fig. 19 - Typical Stored Charge vs. dif/dt
300
QRR - (nC)
200
100
IF = 45A VR = 64V TJ = 125°C TJ = 25°C
0 100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRF/B/S/SL3207
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
• • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage
Body Diode
Forward Drop
Inductor Curent Inductor Current
Ripple ≤ 5% ISD
* VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
15V
tp
DRIVER
VDS
L
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
A
0.01Ω
I AS
Fig 22a. Unclamped Inductive Test Circuit
LD VDS
Fig 22b. Unclamped Inductive Waveforms
+
VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1%
90%
VDS
10%
VGS
td(on) tr td(off) tf
Fig 23a. Switching Time Test Circuit
Fig 23b. Switching Time Waveforms
Id Vds Vgs
L
0
DUT 1K
VCC
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
www.irf.com
Fig 24a. Gate Charge Test Circuit
Fig 24b. Gate Charge Waveform
7
IRF/B/S/SL3207
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN
14.09 (.555) 13.47 (.530)
4.06 (.160) 3.55 (.140)
3X 1.40 (.055) 3X 1.15 (.045) 2.54 (.100) 2X NOTES:
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.92 (.115) 2.64 (.104)
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMPL E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R
Note: "P" in assembly line position indicates "Lead-Free"
DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C
TO-220AB packages are not recommended for Surface Mount Application.
8
www.irf.com
IRF/B/S/SL3207
TO-262 Package Outline (Dimensions are shown in millimeters (inches))
IGBT 1- GATE 2- COLLECTOR 3- EMITTER 4- COLLECTOR
TO-262 Part Marking Information
EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 AS SEMBLED ON WW 19, 1997 IN THE ASS EMBLY LINE "C" Note: "P" in as sembly line pos ition indicates "Lead-Free" INTERNATIONAL RECTIFIER LOGO ASS EMBLY LOT CODE PART NUMBER
DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C
OR
INT ERNATIONAL RECTIFIER LOGO AS SEMBLY LOT CODE PART NUMBER DAT E CODE P = DES IGNATES LEAD-FREE PRODUCT (OPTIONAL) YEAR 7 = 1997 WEEK 19 A = AS SEMBLY SITE CODE
www.irf.com
9
IRF/B/S/SL3207
D2Pak Package Outline (Dimensions are shown in millimeters (inches))
D2Pak Part Marking Information
T HIS IS AN IRF530S WITH LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" Note: "P" in assembly line pos ition indicates "Lead-Free" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L
OR
INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE
PART NUMBER F530S DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 0 = 2000 WEEK 02 A = AS S EMBLY S IT E CODE
10
www.irf.com
IRF/B/S/SL3207
D2Pak Tape & Reel Information
TRR
1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153)
1.60 (.063) 1.50 (.059)
0.368 (.0145) 0.342 (.0135)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
11.60 (.457) 11.40 (.449)
15.42 (.609) 15.22 (.601)
24.30 (.957) 23.90 (.941)
TRL
10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178)
FEED DIRECTION
13.50 (.532) 12.80 (.504)
27.40 (1.079) 23.90 (.941)
4
330.00 (14.173) MAX.
60.00 (2.362) MIN.
NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039) 24.40 (.961) 3
30.40 (1.197) MAX. 4
Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 11/04
www.irf.com
11