PD - 94358
SMPS MOSFET
IRFB38N20D IRFS38N20D IRFSL38N20D
HEXFET® Power MOSFET
l
Applications High frequency DC-DC converters
VDSS
200V
RDS(on) max
0.054Ω
ID
44A
Benefits Low Gate-to-Drain Charge to Reduce Switching Losses l Fully Characterized Capacitance Including Effective COSS to Simplify Design, (See App. Note AN1001) l Fully Characterized Avalanche Voltage and Current
l
TO-220AB IRFB38N20D
D2Pak IRFS38N20D
TO-262 IRFSL38N20D
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C ID @ TC = 100°C IDM PD @TA = 25°C PD @TC = 25°C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torqe, 6-32 or M3 screw
Max.
44 32 180 3.8 320 2.1 ± 30 9.5 -55 to + 175 300 (1.6mm from case ) 10 lbf•in (1.1N•m)
Units
A W W/°C V V/ns °C
Thermal Resistance
Parameter
RθJC RθCS RθJA RθJA Notes through Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Junction-to-Ambient are on page 11
Typ.
––– 0.50 ––– –––
Max.
0.47 ––– 62 40
Units
°C/W
www.irf.com
1
12/12/01
IRFB/IRFS/IRFSL38N20D
Static @ TJ = 25°C (unless otherwise specified)
Parameter Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage V(BR)DSS IDSS IGSS Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. 200 ––– ––– 3.0 ––– ––– ––– ––– Typ. ––– 0.22 ––– ––– ––– ––– ––– ––– Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 0.054 Ω VGS = 10V, ID = 26A 5.0 V VDS = VGS, ID = 250µA 25 VDS = 200V, VGS = 0V µA 250 VDS = 160V, VGS = 0V, TJ = 150°C 100 VGS = 30V nA -100 VGS = -30V
Dynamic @ TJ = 25°C (unless otherwise specified)
gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 17 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 76 22 34 16 95 29 47 2900 450 73 3550 180 380 Max. Units Conditions ––– S VDS = 50V, ID = 26A 110 ID = 26A 34 nC VDS = 160V 51 VGS = 10V, ––– VDD = 100V ––– ID = 26A ns ––– RG = 2.5Ω ––– VGS = 10V ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 160V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 160V
Avalanche Characteristics
Parameter
EAS IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy
Typ.
––– ––– –––
Max.
460 26 32
Units
mJ A mJ
Diode Characteristics
IS
ISM
VSD trr Qrr ton
Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time
Min. Typ. Max. Units
Conditions D MOSFET symbol 44 ––– ––– showing the A G integral reverse ––– ––– 180 S p-n junction diode. ––– ––– 1.5 V TJ = 25°C, IS = 26A, VGS = 0V ––– 160 240 nS TJ = 25°C, IF = 26A ––– 1.3 2.0 µC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.irf.com
IRFB/IRFS/IRFSL38N20D
1000
VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V BOTTOM 5.0V TOP
100
ID , Drain-to-Source Current (A)
100
ID , Drain-to-Source Current (A)
10
VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V BOTTOM 5.0V TOP
5.0V
10
1
1
5.0V 300µs PULSE WIDTH Tj = 25°C
300µs PULSE WIDTH Tj = 175°C
0.1 100 0.1 1 10 100
0.1 0.1 1 10
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000.00
3.5
I D = 44A
ID, Drain-to-Source Current (Α )
3.0
T J = 25°C
(Normalized)
2.5
T J = 175°C
R DS(on) , Drain-to-Source On Resistance
100.00
2.0
1.5
10.00
1.0
VDS = 15V 300µs PULSE WIDTH
1.00 5.0 7.0 9.0 11.0 13.0 15.0
0.5
0.0 -60 -40 -20 0 20 40 60 80
V GS = 10V
100 120 140 160 180
VGS, Gate-to-Source Voltage (V)
TJ , Junction Temperature
( ° C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRFB/IRFS/IRFSL38N20D
100000
12
VGS = 0V, f = 1 MHZ Ciss = C + C , C gs gd ds SHORTED Crss = C gd Coss = C + C ds gd
ID = 26A
10
V DS = 160V V DS = 100V V DS = 40V
10000
C, Capacitance(pF)
Ciss
1000
VGS, Gate-to-Source Voltage (V)
7
Coss
100
5
Crss
2
10 1 10 100 1000
0 0 16 32 48 64 80
VDS, Drain-to-Source Voltage (V)
Q G, Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
1000.00
1000 OPERATION IN THIS AREA LIMITED BY R DS(on)
100.00
TJ = 175°C
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
100
100µsec 10 1msec 1 Tc = 25°C Tj = 175°C Single Pulse 1 10 100 10msec
10.00 T J = 25°C 1.00 VGS = 0V 0.10 0.0 0.5 1.0 1.5 2.0 2.5 VSD , Source-toDrain Voltage (V)
0.1
1000
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRFB/IRFS/IRFSL38N20D
50
VDS VGS
RD
40
D.U.T.
+
RG
-VDD
ID , Drain Current (A)
30
10V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
20
Fig 10a. Switching Time Test Circuit
10
VDS 90%
0 25 50 75 100 125 150 175
TC , Case Temperature
( ° C)
10% VGS
Fig 9. Maximum Drain Current Vs. Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
1
(Z thJC )
D = 0.50
0.1
0.20 0.10
Thermal Response
0.05 0.02 0.01 0.01
SINGLE PULSE (THERMAL RESPONSE)
0.001 0.00001
Notes: 1. Duty factor D = 2. Peak T t1 / t
2 J = P DM x Z thJC
P DM t1 t2 +T C 1
0.0001
0.001
0.01
0.1
t 1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFB/IRFS/IRFSL38N20D
1 5V
900
VDS
L
D R IV E R EAS , Single Pulse Avalanche Energy (mJ)
720
TOP ID 11A 19A 26A BOTTOM
RG
20V tp
D .U .T
IA S
+ V - DD
540
A
0 .0 1 Ω
360
Fig 12a. Unclamped Inductive Test Circuit
180
V (B R )D SS tp
0 25 50 75 100 125 150 175
Starting Tj, Junction Temperature
( ° C)
IAS
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
QG
50KΩ 12V .2µF .3µF
10 V
QGS VG QGD
D.U.T. VGS
3mA
+ V - DS
Charge
IG
ID
Current Sampling Resistors
Fig 13a. Basic Gate Charge Waveform
Fig 13b. Gate Charge Test Circuit
6
www.irf.com
IRFB/IRFS/IRFSL38N20D
Peak Diode Recovery dv/dt Test Circuit
D.U.T
+
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
-
+
RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
+ VDD
Driver Gate Drive P.W. Period D=
P.W. Period VGS=10V
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
VDD
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFET® Power MOSFETs
www.irf.com
7
IRFB/IRFS/IRFSL38N20D
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2 .8 7 ( .1 1 3 ) 2 .6 2 ( .1 0 3 )
1 0 .5 4 ( .4 1 5 ) 1 0 .2 9 ( .4 0 5 )
3 .7 8 ( .1 4 9 ) 3 .5 4 ( .1 3 9 ) -A6.4 7 ( .2 5 5 ) 6.1 0 ( .2 4 0 )
-B4 .6 9 ( .1 8 5 ) 4 .2 0 ( .1 6 5 ) 1 .3 2 ( .0 5 2 ) 1 .2 2 ( .0 4 8 )
4 1 5 .2 4 ( .6 0 0 ) 1 4 .8 4 ( .5 8 4 )
1 .1 5 ( .0 4 5 ) M IN 1 2 3
L E A D A S S IG N M E N T S 1 - GATE 2 - D R A IN 3 - S OU RC E 4 - D R A IN
1 4 .0 9 ( .5 5 5 ) 1 3 .4 7 ( .5 3 0 )
4 .0 6 ( .1 6 0 ) 3 .5 5 ( .1 4 0 )
3X 3X 1 .4 0 ( .0 5 5 ) 1 .1 5 ( .0 4 5 )
0 .9 3 ( .0 3 7 ) 0 .6 9 ( .0 2 7 ) M BAM
3X
0 .5 5 ( .0 2 2 ) 0 .4 6 ( .0 1 8 )
0 .3 6 ( .0 1 4 )
2 .5 4 ( .1 0 0 ) 2X N O TE S : 1 D IM E N S IO N IN G & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2 . 2 C O N T R O L L IN G D IM E N S IO N : IN C H
2 .9 2 ( .1 1 5 ) 2 .6 4 ( .1 0 4 )
3 O U T L IN E C O N F O R M S T O J E D E C O U T L IN E T O -2 2 0 A B . 4 H E A T S IN K & L E A D M E A S U R E M E N T S D O N O T IN C L U D E B U R R S .
TO-220AB Part Marking Information
EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"
INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE
PART NUMBER
DATE CODE YEAR 7 = 1997 WEEK 19 LINE C
8
www.irf.com
IRFB/IRFS/IRFSL38N20D
D2Pak Package Outline
1 0.54 (.4 15) 1 0.29 (.4 05) 1.4 0 (.055 ) M AX. -A2
4.69 (.1 85) 4.20 (.1 65)
-B 1.3 2 (.05 2) 1.2 2 (.04 8)
1 0.16 (.4 00 ) RE F.
6.47 (.2 55 ) 6.18 (.2 43 ) 15 .4 9 (.6 10) 14 .7 3 (.5 80) 5 .28 (.20 8) 4 .78 (.18 8) 2.7 9 (.110 ) 2.2 9 (.090 ) 2.61 (.1 03 ) 2.32 (.0 91 ) 1.3 9 (.0 5 5) 1.1 4 (.0 4 5) 8.8 9 (.3 50 ) R E F.
1.7 8 (.07 0) 1.2 7 (.05 0)
1
3
3X
1.40 (.0 55) 1.14 (.0 45) 3X 5 .08 (.20 0)
0 .93 (.03 7 ) 0 .69 (.02 7 ) 0 .25 (.01 0 ) M BAM
0.5 5 (.022 ) 0.4 6 (.018 )
M IN IM U M R E CO M M E ND E D F O O TP R IN T 1 1.43 (.4 50 )
NO TE S: 1 D IM EN S IO N S A FTER SO L D ER D IP. 2 D IM EN S IO N IN G & TO LE RA N C IN G PE R A N S I Y1 4.5M , 198 2. 3 C O N TRO L LIN G D IM EN SIO N : IN C H . 4 H E ATSINK & L EA D D IM EN S IO N S D O N O T IN C LU D E B UR R S.
LE A D A SS IG N M E N TS 1 - G A TE 2 - D R AIN 3 - S O U RC E
8.89 (.3 50 ) 17 .78 (.70 0)
3 .8 1 (.15 0) 2 .08 (.08 2) 2X 2.5 4 (.100 ) 2X
D2Pak Part Marking Information
THIS IS AN IRF530S WITH LOT CODE 8024 ASSEMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE "L" INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER F530S DATE CODE YEAR 0 = 2000 WEEK 02 LINE L
www.irf.com
9
IRFB/IRFS/IRFSL38N20D
TO-262 Package Outline
TO-262 Part Marking Information
EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"
INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE
PART NUMBER
DATE CODE YEAR 7 = 1997 WEEK 19 LINE C
10
www.irf.com
IRFB/IRFS/IRFSL38N20D
D2Pak Tape & Reel Information
TR R
1 .6 0 (.0 6 3 ) 1 .5 0 (.0 5 9 ) 4 .1 0 ( .1 6 1 ) 3 .9 0 ( .1 5 3 )
1 .6 0 (.0 6 3 ) 1 .5 0 (.0 5 9 ) 0.3 6 8 (.01 4 5 ) 0.3 4 2 (.01 3 5 )
F E E D D IR E C TIO N 1 .8 5 ( .0 7 3 )
1 .6 5 ( .0 6 5 )
1 1.6 0 (.4 57 ) 1 1.4 0 (.4 49 )
1 5 .42 (.60 9 ) 1 5 .22 (.60 1 )
2 4 .3 0 (.9 5 7 ) 2 3 .9 0 (.9 4 1 )
TRL
1 0.9 0 (.4 2 9) 1 0.7 0 (.4 2 1) 1 .75 (.06 9 ) 1 .25 (.04 9 ) 16 .1 0 (.63 4 ) 15 .9 0 (.62 6 ) 4 .7 2 (.1 3 6) 4 .5 2 (.1 7 8)
F E E D D IR E C T IO N
13.50 (.532 ) 12.80 (.504 )
2 7.4 0 (1.079 ) 2 3.9 0 (.9 41) 4
3 30 .00 ( 14.1 73 ) MAX.
6 0.0 0 (2.36 2) M IN .
Notes:
N O TE S : 1 . CO M F OR M S TO E IA -418 . 2 . CO N TR O L LIN G D IM E N SIO N : M IL LIM E T ER . 3 . DIM E NS IO N M EA S UR E D @ H U B. 4 . IN C LU D ES FL AN G E DIST O R T IO N @ O UT E R E D G E.
26 .40 (1 .03 9) 24 .40 (.9 61 ) 3
30.4 0 (1.19 7) M A X. 4
Repetitive rating; pulse width limited by
max. junction temperature. Starting TJ = 25°C, L = 1.3mH RG = 25Ω, IAS = 26A. ISD ≤ 26A, di/dt ≤ 390A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
Pulse width ≤ 300µs; duty cycle ≤ 2%.
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
This is only applied to TO-220AB package.
This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] (IRFB38N20D), & Industrial (IRFS/SL38N20D) market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/01
www.irf.com
11