0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFSL4321PBF

IRFSL4321PBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRFSL4321PBF - HEXFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRFSL4321PBF 数据手册
PD - 97105 IRFS4321PbF IRFSL4321PbF Applications Motion Control Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l Hard Switched and High Frequency Circuits l HEXFET® Power MOSFET Benefits l Low RDSON Reduces Losses l Low Gate Charge Improves the Switching Performance l Improved Diode Recovery Improves Switching & EMI Performance l 30V Gate Voltage Rating Improves Robustness l Fully Characterized Avalanche SOA VDSS RDS(on) typ. max. ID D D 150V 12m: 15m: 83A c D G S G D S G D S D2Pak TO-262 IRFS4321PbF IRFSL4321PbF D S G Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS (Thermally limited) TJ TSTG Parameter Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current d Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy e Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Max. 83 c 59 330 330 2.2 ±30 120 -55 to + 175 300 Units A W W/°C V mJ °C Thermal Resistance Parameter RθJC RθJA Junction-to-Case g Junction-to-Ambient g Typ. ––– ––– Max. 0.45* 40 Units °C/W * RθJC (end of life) for D2Pak and TO-262 = 0.65°C/W. This is the maximum measured value after 1000 temperature cycles from -55 to 150°C and is accounted for by the physical wearout of the die attach medium. Notes  through … are on page 2 www.irf.com 1 6/23/06 IRFS_SL4321PbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS Parameter Drain-to-Source Breakdown Voltage Min. Typ. Max. Units 150 ––– ––– 3.0 ––– ––– ––– ––– ––– ––– 150 12 ––– ––– ––– ––– ––– 0.8 ––– 15 5.0 20 1.0 100 -100 ––– Ω V Conditions VGS = 0V, ID = 250µA ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) IDSS IGSS RG(int) Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance ––– mV/°C Reference to 25°C, ID = 1mAd mΩ VGS = 10V, ID = 33A f V µA nA VDS = VGS, ID = 250µA VDS = 150V, VGS = 0V VGS = 20V VGS = -20V mA VDS = 150V, VGS = 0V, TJ = 125°C Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units 130 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 71 24 21 18 60 25 35 4460 390 82 ––– 110 ––– ––– ––– ––– ––– ––– ––– ––– ––– pF ns S nC ID = 50A VDS = 75V VGS = 10V f VDD = 75V ID = 50A RG = 2.5Ω VGS = 10V f VGS = 0V VDS = 25V ƒ = 1.0MHz Conditions VDS = 25V, ID = 50A Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) d Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– ––– 89 300 6.5 83c 330 1.3 130 450 ––– A A V ns nC A Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 50A, VGS = 0V f ID = 50A VR = 128V, di/dt = 100A/µs f G S D Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes:  Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A ‚ Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.096mH RG = 25Ω, IAS = 50A, VGS =10V. Part not recommended for use above this value. „ Pulse width ≤ 400µs; duty cycle ≤ 2%. … Rθ is measured at TJ approximately 90°C 2 www.irf.com IRFS_SL4321PbF 1000 TOP 1000 VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V TOP VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V ID, Drain-to-Source Current (A) 100 BOTTOM ID, Drain-to-Source Current (A) 100 BOTTOM 10 10 5.0V 1 5.0V 0.1 0.1 1 ≤ 60µs PULSE WIDTH Tj = 25°C 1 10 100 0.1 1 ≤ 60µs PULSE WIDTH Tj = 175°C 10 100 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 3.5 Fig 2. Typical Output Characteristics RDS(on) , Drain-to-Source On Resistance ID = 50A 3.0 ID, Drain-to-Source Current(Α) VGS = 10V 100 2.5 TJ = 175°C 10 (Normalized) 2.0 1 TJ = 25°C VDS = 25V 1.5 1.0 ≤ 60µs PULSE WIDTH 0.1 3.0 4.0 5.0 6.0 7.0 8.0 9.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 VGS, Gate-to-Source Voltage (V) TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics 7000 6000 5000 4000 3000 2000 1000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd Fig 4. Normalized On-Resistance vs. Temperature 20 VGS, Gate-to-Source Voltage (V) ID= 50A VDS = 120V VDS= 75V VDS= 30V 16 C, Capacitance (pF) Ciss 12 Coss 8 4 Crss 0 1 10 100 0 0 20 40 60 80 100 120 QG Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRFS_SL4321PbF 1000 1000 ID, Drain-to-Source Current (A) OPERATION IN THIS AREA LIMITED BY R DS (on) 100µsec 1msec ISD , Reverse Drain Current (A) 100 TJ = 175°C 10 100 10 10msec 1 TJ = 25°C 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 10 DC VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 100 1000 VSD , Source-to-Drain Voltage (V) VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 90 80 70 ID , Drain Current (A) V(BR)DSS , Drain-to-Source Breakdown Voltage Fig 8. Maximum Safe Operating Area 190 LIMITED BY PACKAGE 180 60 50 40 30 20 10 0 25 50 75 100 125 150 175 TC , Case Temperature (°C) 170 160 150 140 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature 5.0 Fig 10. Drain-to-Source Breakdown Voltage 500 EAS, Single Pulse Avalanche Energy (mJ) 4.0 400 ID 13A 20A BOTTOM 50A TOP Energy (µJ) 3.0 300 2.0 200 1.0 100 0.0 0 20 40 60 80 100 120 140 160 0 25 50 75 100 125 150 175 VDS, Drain-to-Source Voltage (V) Starting TJ, Junction Temperature (°C) Fig 11. Typical COSS Stored Energy Fig 12. Maximum Avalanche Energy Vs. DrainCurrent 4 www.irf.com IRFS_SL4321PbF 1 Thermal Response ( Z thJC ) D = 0.50 0.1 0.20 0.10 τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τC τ1 τ2 τ3 τ3 τ Ri (°C/W) τι (sec) 0.05 0.01 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi/Ri Ci= τi/Ri 0.085239 0.000052 0.18817 0.00098 0.176912 0.008365 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 0.001 1E-006 1E-005 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Duty Cycle = Single Pulse 0.01 Avalanche Current (A) 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse) 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth 120 EAR , Avalanche Energy (mJ) 100 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 50A 80 60 40 20 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) 175 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFS_SL4321PbF 6.0 40 VGS(th), Gate threshold Voltage (V) 5.0 ID = 1.0A ID = 1.0mA ID = 250µA IRRM - (A) 30 4.0 20 3.0 10 2.0 IF = 33A VR = 128V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 0 TJ , Temperature ( °C ) dif / dt - (A / µs) Fig 16. Threshold Voltage Vs. Temperature 40 Fig. 17 - Typical Recovery Current vs. dif/dt 3200 2800 30 2400 20 QRR - (nC) IF = 50A VR = 128V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 IRRM - (A) 2000 1600 1200 800 400 0 IF = 33A VR = 128V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 10 0 dif / dt - (A / µs) dif / dt - (A / µs) Fig. 18 - Typical Recovery Current vs. dif/dt 3200 2800 2400 Fig. 19 - Typical Stored Charge vs. dif/dt QRR - (nC) 2000 1600 1200 800 400 0 IF = 50A VR = 128V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFS_SL4321PbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit LD VDS Fig 22b. Unclamped Inductive Waveforms + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% 90% VDS 10% VGS td(on) tr td(off) tf Fig 23a. Switching Time Test Circuit Fig 23b. Switching Time Waveforms Id Vds Vgs L 0 DUT 1K VCC Vgs(th) Qgs1 Qgs2 Qgd Qgodr www.irf.com Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform 7 IRFS_SL4321PbF D2Pak Package Outline (Dimensions are shown in millimeters (inches)) D2Pak Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 ASS EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L OR INT ERNAT IONAL RECT IFIER LOGO AS SEMBLY LOT CODE PART NUMBER F530S DAT E CODE P = DES IGNAT ES LEAD - FREE PRODUCT (OPT IONAL) YEAR 0 = 2000 WEEK 02 A = AS S EMBLY SIT E CODE 8 www.irf.com IRFS_SL4321PbF TO-262 Package Outline (Dimensions are shown in millimeters (inches)) TO-262 Part Marking Infor EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN THE AS S EMBLY LINE "C" INTERNATIONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C OR INTERNATIONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE P = DES IGNATES LEAD-FREE PRODUCT (OPT IONAL) YEAR 7 = 1997 WEEK 19 A = AS S EMBLY S ITE CODE www.irf.com 9 IRFS_SL4321PbF D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 6/06 10 www.irf.com
IRFSL4321PBF 价格&库存

很抱歉,暂时无法提供与“IRFSL4321PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货