0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFSL4410PBF

IRFSL4410PBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRFSL4410PBF - HEXFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRFSL4410PBF 数据手册
PD - 95707E IRFB4410PbF IRFS4410PbF IRFSL4410PbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits G S HEXFET® Power MOSFET D Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free VDSS RDS(on) typ. max. ID 100V 8.0m: 10m: 88A S D G TO-220AB IRFB4410PbF S D G D2Pak IRFS4410PbF S D G TO-262 IRFSL4410PbF Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current d ™l 63™l 88 380 200 1.3 Max. Units A Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw l l W W/°C V V/ns °C f ± 20 19 -55 to + 175 300 10lb in (1.1N m) 220 See Fig. 14, 15, 16a, 16b x x Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Ù e mJ A mJ Repetitive Avalanche Energy g Thermal Resistance Symbol RθJC RθCS RθJA RθJA Junction-to-Case Case-to-Sink, Flat Greased Surface , TO-220 Junction-to-Ambient, TO-220 Junction-to-Ambient (PCB Mount) , D2Pak k Parameter Typ. ––– 0.50 ––– ––– Max. 0.61 ––– 62 40 l Units °C/W k jk www.irf.com 1 05/02/07 IRFB/S/SL4410PbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS IGSS RG Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Input Resistance Min. Typ. Max. Units 100 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– ––– 0.094 ––– 8.0 10 ––– 4.0 ––– 20 ––– 250 ––– 200 ––– -200 1.5 ––– Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 58A V VDS = VGS, ID = 150µA µA VDS = 100V, VGS = 0V VDS = 100V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω f = 1MHz, open drain g d Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) Min. Typ. Max. Units 120 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 120 31 44 24 80 55 50 5150 360 190 420 500 ––– 180 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Conditions VDS = 50V, ID = 58A ID = 58A VDS = 80V VGS = 10V VDD = 65V ID = 58A RG = 4.1Ω VGS = 10V VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 80V VGS = 0V, VDS = 0V to 80V ns g g pF h i, See Fig.11 h, See Fig. 5 D Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time Min. Typ. Max. Units ––– ––– ––– ––– 88 ™ Conditions MOSFET symbol showing the integral reverse G S A A Ãd 380 ––– ––– 1.3 V ––– 38 56 ns ––– 51 77 ––– 61 92 nC TJ = 125°C ––– 110 170 ––– 2.8 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) p-n junction diode. TJ = 25°C, IS = 58A, VGS = 0V VR = 85V, TJ = 25°C IF = 58A TJ = 125°C di/dt = 100A/µs TJ = 25°C g g Notes:  Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A. ‚ Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.14mH RG = 25Ω, IAS = 58A, VGS =10V. Part not recommended for use above this value. „ ISD ≤ 58A, di/dt ≤ 650A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. … Pulse width ≤ 400µs; duty cycle ≤ 2%. † Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . ‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. Coss while VDS is rising from 0 to 80% VDSS . ‰ Rθ is measured at TJ approximately 90°C. Š RθJC (end of life) for D2Pak and TO-262 = 0.75°C/W. Note: This is the maximum measured value after 1000 temperature cycles from -55 to 150°C and is accounted for by the physical wearout of the die attach medium. 2 www.irf.com IRFB/S/SL4410PbF 1000 TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V 1000 TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V ID, Drain-to-Source Current (A) 100 BOTTOM ID, Drain-to-Source Current (A) 100 BOTTOM 10 10 4.5V 1 4.5V ≤60µs PULSE WIDTH 0.1 0.1 1 Tj = 25°C 10 1 100 1000 0.1 1 ≤60µs PULSE WIDTH Tj = 175°C 10 100 1000 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 3.0 Fig 2. Typical Output Characteristics RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (Α) 100 T J = 175°C 10 T J = 25°C 1 VDS = 25V ≤60µs PULSE WIDTH 0.1 2 3 4 5 6 7 8 9 10 2.5 ID = 58A VGS = 10V 2.0 1.5 1.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 VGS, Gate-to-Source Voltage (V) T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics 100000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd Fig 4. Normalized On-Resistance vs. Temperature 12.0 ID= 58A VGS, Gate-to-Source Voltage (V) 10.0 8.0 6.0 4.0 2.0 0.0 C, Capacitance(pF) 10000 Ciss VDS= 80V VDS= 50V VDS= 20V 1000 Coss Crss 100 1 10 VDS, Drain-to-Source Voltage (V) 100 0 20 40 60 80 100 120 QG Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRFB/S/SL4410PbF 1000 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec 1msec 100 T J = 175°C ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 10 T J = 25°C 10msec 10 DC Tc = 25°C Tj = 175°C Single Pulse 1 0 1 10 100 1000 VGS = 0V 1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage V(BR)DSS , Drain-to-Source Breakdown Voltage (V) Fig 8. Maximum Safe Operating Area 130 100 Limited By Package 75 125 ID, Drain Current (A) 120 50 115 110 25 105 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) 100 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 T J , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Case Temperature 2.0 Fig 10. Drain-to-Source Breakdown Voltage 900 EAS , Single Pulse Avalanche Energy (mJ) 800 700 600 500 400 300 200 100 0 1.5 ID 6.7A 9.7A BOTTOM 58A TOP Energy (µJ) 1.0 0.5 0.0 0 20 40 60 80 100 120 25 50 75 100 125 150 175 VDS, Drain-to-Source Voltage (V) Starting T J , Junction Temperature (°C) 4 Fig 11. Typical COSS Stored Energy Fig 12. Maximum Avalanche Energy vs. DrainCurrent www.irf.com IRFB/S/SL4410PbF 1 D = 0.50 Thermal Response ( Z thJC ) 0.1 0.20 0.10 0.05 0.01 0.02 0.01 τJ R1 R1 τJ τ1 τ2 R2 R2 τC τ Ri (°C/W) τi (sec) 0.2736 0.000376 0.3376 0.004143 τ1 τ2 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1E-006 1E-005 0.0001 0.001 0.01 0.1 0.0001 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) 100 Duty Cycle = Single Pulse 0.01 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse) 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth 250 EAR , Avalanche Energy (mJ) 200 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 58A 150 100 50 0 25 50 75 100 125 150 175 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max) is exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Starting T J , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFB/S/SL4410PbF 5.0 20 VGS(th) Gate threshold Voltage (V) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 15 IRRM (A) ID = 150µA ID = 250µA ID = 1.0mA ID = 1.0A 10 5 IF = 19A VR = 85V T = 25°C _____ J T = 125°C ---------J 0 100 200 300 400 500 600 700 800 900 1000 dif/dt (A/µs) T J , Temperature ( °C ) Fig 16. Threshold Voltage vs. Temperature 20 Fig. 17 - Typical Recovery Current vs. dif/dt 400 350 15 300 250 IRRM (A) Qrr (nC) 10 200 150 5 IF = 38A V = 85V R T = 25°C _____ J TJ = 125°C ---------- 100 50 0 IF = 19A VR = 85V T = 25°C _____ J T = 125°C ---------J 0 100 200 300 400 500 600 700 800 900 1000 dif/dt (A/µs) 100 200 300 400 500 600 700 800 900 1000 dif/dt (A/µs) Fig. 18 - Typical Recovery Current vs. dif/dt 400 350 300 250 Qrr (nC) Fig. 19 - Typical Stored Charge vs. dif/dt 200 150 100 50 0 100 200 300 400 500 600 700 800 900 1000 dif/dt (A/µs) I = 38A F V = 85V R TJ = 25°C _____ TJ = 125°C ---------- 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFB/S/SL4410PbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01Ω I AS Fig 21a. Unclamped Inductive Test Circuit LD VDS Fig 21b. Unclamped Inductive Waveforms + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% 90% VDS 10% VGS td(on) tr td(off) tf Fig 22a. Switching Time Test Circuit Fig 22b. Switching Time Waveforms Id Vds Vgs L 0 DUT 1K VCC Vgs(th) Qgs1 Qgs2 Qgd Qgodr www.irf.com Fig 23a. Gate Charge Test Circuit Fig 23b. Gate Charge Waveform 7 IRFB/S/SL4410PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSA  à GPUÃ8P9@à &'( 6TT@H7G@9ÃPIÃXXà (Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å I‚‡r)ÃÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚ vqvph‡r†ÃÅGrhqÃÃA…rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ `@6SÃÃ2Ã! X@@Fà ( GDI@Ã8 TO-220AB packages are not recommended for Surface Mount Application. 8 www.irf.com IRFB/S/SL4410PbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSG" "G GPUÃ8P9@à &'( 6TT@H7G@9ÃPIÃXXà (à ((& DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ `@6SÃ&Ã2à ((& X@@Fà ( GDI@Ã8 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69AS@@ QSP9V8UÃPQUDPI6G `@6SÃ&Ã2à ((& X@@Fà ( 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ www.irf.com 9 IRFB/S/SL4410PbF Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Package Outline D2Pak (TO-263AB) Part Marking Information UCDTÃDTÃ6IÃDSA$"TÃXDUC GPUÃ8P9@Ã'!# 6TT@H7G@9ÃPIÃXXÃ!Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅGÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S A$"T 96U@Ã8P9@ `@6SÃÃ2Ã! X@@FÃ! GDI@ÃG 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ 10 Q6SUÃIVH7@S A$"T 96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69ÃÃAS@@ QSP9V8UÃPQUDPI6G `@6SÃÃ2Ã! X@@FÃ! 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ www.irf.com IRFB/S/SL4410PbF D2Pak (TO-263AB) Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/07 www.irf.com 11
IRFSL4410PBF 价格&库存

很抱歉,暂时无法提供与“IRFSL4410PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货