0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFSL4610PBF

IRFSL4610PBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRFSL4610PBF - HEXFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRFSL4610PBF 数据手册
PD - 95936B IRFB4610PbF IRFS4610PbF IRFSL4610PbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits l Lead-Free Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability HEXFET® Power MOSFET D G S VDSS RDS(on) typ. max. ID 100V 11m: 14m: 73A S D G TO-220AB IRFB4610PbF S GD D2Pak IRFS4610PbF S D G TO-262 IRFSL4610PbF Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dV/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Max. 73 52 290 190 1.3 ± 20 7.6 -55 to + 175 300 10lb in (1.1N m) Units A f Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw W W/°C V V/ns °C e x x Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Ù d 370 See Fig. 14, 15, 16a, 16b, mJ A mJ Repetitive Avalanche Energy f Thermal Resistance Symbol RθJC RθCS RθJA RθJA Junction-to-Case j Parameter Typ. ––– 0.50 ––– ––– Max. 0.77 ––– 62 40 Units °C/W Case-to-Sink, Flat Greased Surface , TO-220 Junction-to-Ambient, TO-220 Junction-to-Ambient (PCB Mount) , D2Pak j ij www.irf.com 1 01/23/06 IRF/B/S/SL4610PbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS IGSS RG Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Input Resistance Min. Typ. Max. Units 100 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– ––– 0.085 ––– 11 14 ––– 4.0 ––– 20 ––– 250 ––– 200 ––– -200 1.5 ––– Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 44A V VDS = VGS, ID = 100µA µA VDS = 100V, VGS = 0V VDS = 100V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω f = 1MHz, open drain f ™ Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units ––– 90 20 36 18 87 53 70 3550 260 150 330 380 ––– 140 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Conditions VDS = 50V, ID = 44A ID = 44A VDS = 80V VGS = 10V VDD = 65V ID = 44A RG = 5.6Ω VGS = 10V VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 80V VGS = 0V, VDS = 0V to 80V 73 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Effective Output Capacitance (Energy Related) ––– ––– Effective Output Capacitance (Time Related) ns f f pF h, See Fig.11 g, See Fig. 5 D Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time Min. Typ. Max. Units ––– ––– ––– ––– 73 290 A Conditions MOSFET symbol showing the integral reverse G S Ù p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 44A, VGS = 0V VR = 85V, ––– 35 53 ns TJ = 25°C IF = 44A TJ = 125°C ––– 42 63 di/dt = 100A/µs ––– 44 66 nC TJ = 25°C TJ = 125°C ––– 65 98 ––– 2.1 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) f f Notes:  Repetitive rating; pulse width limited by max. junction temperature. ‚ Limited by TJmax, starting TJ = 25°C, L = 0.39mH RG = 25Ω, IAS = 44A, VGS =10V. Part not recommended for use above this value. ƒ ISD ≤ 44A, di/dt ≤ 660A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. „ Pulse width ≤ 400µs; duty cycle ≤ 2%. … Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . † Coss eff. (ER) is a fixed capacitance that gives the same energy as ‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom ˆ Rθ is measured at TJ approximately 90°C Coss while VDS is rising from 0 to 80% VDSS . mended footprint and soldering techniques refer to application note #AN-994. 2 www.irf.com IRF/B/S/SL4610PbF 1000 TOP 1000 ID, Drain-to-Source Current (A) 100 BOTTOM ID, Drain-to-Source Current (A) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TOP BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 10 4.5V ≤ 60µs PULSE WIDTH Tj = 25°C 4.5V ≤ 60µs PULSE WIDTH Tj = 25°C 10 0.1 1 10 100 1 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000.0 Fig 2. Typical Output Characteristics 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current(Α) 100.0 2.5 ID = 73A VGS = 10V TJ = 175°C 10.0 2.0 1.5 1.0 TJ = 25°C VDS = 25V 1.0 ≤ 60µs PULSE WIDTH 0.1 2.0 3.0 4.0 5.0 6.0 7.0 8.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 VGS, Gate-to-Source Voltage (V) TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics 6000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd 4000 Fig 4. Normalized On-Resistance vs. Temperature 20 VGS, Gate-to-Source Voltage (V) ID= 44A VDS = 80V VDS= 50V VDS= 20V 5000 16 C, Capacitance (pF) Ciss 12 3000 8 2000 4 1000 Coss Crss 1 10 100 0 0 0 20 40 60 80 100 120 140 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRF/B/S/SL4610PbF 1000.0 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100.0 TJ = 175°C 100 10.0 10 1msec 10msec Tc = 25°C Tj = 175°C Single Pulse TJ = 25°C 1.0 1 VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 DC 10 100 1000 0.1 1 VSD, Source-to-Drain Voltage (V) VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 80 Fig 8. Maximum Safe Operating Area V(BR)DSS , Drain-to-Source Breakdown Voltage 125 ID , Drain Current (A) 60 120 115 40 110 20 105 0 25 50 75 100 125 150 175 100 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature EAS, Single Pulse Avalanche Energy (mJ) 2.0 Fig 10. Drain-to-Source Breakdown Voltage 1600 1.5 1200 ID 4.6A 6.3A BOTTOM 44A TOP Energy (µJ) 1.0 800 0.5 400 0.0 0 20 40 60 80 100 0 25 50 75 100 125 150 175 VDS, Drain-to-Source Voltage (V) Starting TJ, Junction Temperature (°C) Fig 11. Typical COSS Stored Energy Fig 12. Maximum Avalanche Energy Vs. DrainCurrent 4 www.irf.com IRF/B/S/SL4610PbF 1 D = 0.50 Thermal Response ( ZthJC ) 0.1 0.20 0.10 0.05 0.02 R1 R1 τJ τ1 τ2 R2 R2 τC τ1 τ2 τ 0.01 0.01 τJ Ri (°C/W) τi (sec) 0.4367 0.001016 0.3337 0.009383 0.001 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 0.0001 1E-006 1E-005 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Duty Cycle = Single Pulse 0.01 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth 400 EAR , Avalanche Energy (mJ) 300 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 44A 200 100 0 25 50 75 100 125 150 175 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max) is exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Starting TJ , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRF/B/S/SL4610PbF 5.0 16 VGS(th) Gate threshold Voltage (V) ID = 1.0A 4.0 ID = 1.0mA ID = 100µA ID = 250µA 12 IRRM - (A) 3.0 8 2.0 4 IF = 29A VR = 85V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 0 TJ , Temperature ( °C ) dif / dt - (A / µs) Fig 16. Threshold Voltage Vs. Temperature 16 Fig. 17 - Typical Recovery Current vs. dif/dt 300 12 200 8 QRR - (nC) 100 IRRM - (A) 4 IF = 44A VR = 85V TJ = 125°C TJ = 25°C IF = 29A VR = 85V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 0 dif / dt - (A / µs) dif / dt - (A / µs) Fig. 18 - Typical Recovery Current vs. dif/dt 300 Fig. 19 - Typical Stored Charge vs. dif/dt 200 QRR - (nC) 100 IF = 44A VR = 85V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 0 dif / dt - (A / µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRF/B/S/SL4610PbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit LD VDS Fig 22b. Unclamped Inductive Waveforms + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% 90% VDS 10% VGS td(on) tr td(off) tf Fig 23a. Switching Time Test Circuit Fig 23b. Switching Time Waveforms Id Vds Vgs L 0 DUT 1K VCC Vgs(th) Qgs1 Qgs2 Qgd Qgodr www.irf.com Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform 7 IRF/B/S/SL4610PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSA  à GPUÃ8P9@à &'( 6TT@H7G@9ÃPIÃXXà (Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å I‚‡r)ÃÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚ vqvph‡r†ÃÅGrhqÃÃA…rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ `@6SÃÃ2Ã! X@@Fà ( GDI@Ã8 TO-220AB packages are not recommended for Surface Mount Application. 8 www.irf.com IRF/B/S/SL4610PbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSG" "G GPUÃ8P9@à &'( 6TT@H7G@9ÃPIÃXXà (à ((& DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ `@6SÃ&Ã2à ((& X@@Fà ( GDI@Ã8 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69AS@@ QSP9V8UÃPQUDPI6G `@6SÃ&Ã2à ((& X@@Fà ( 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ www.irf.com 9 IRF/B/S/SL4610PbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information UCDTÃDTÃ6IÃDSA$"TÃXDUC GPUÃ8P9@Ã'!# 6TT@H7G@9ÃPIÃXXÃ!Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅGÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S A$"T 96U@Ã8P9@ `@6SÃÃ2Ã! X@@FÃ! GDI@ÃG 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ 10 Q6SUÃIVH7@S A$"T 96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69ÃÃAS@@ QSP9V8UÃPQUDPI6G `@6SÃÃ2Ã! X@@FÃ! 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ www.irf.com IRF/B/S/SL4610PbF D2Pak (TO-263AB) Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 01/06 www.irf.com 11
IRFSL4610PBF 价格&库存

很抱歉,暂时无法提供与“IRFSL4610PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货