0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFSL4615PbF

IRFSL4615PbF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRFSL4615PbF - HEXFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRFSL4615PbF 数据手册
PD -96202 IRFS4615PbF IRFSL4615PbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free D G S VDSS RDS(on) typ. max. ID D 150V 34.5m: 42m: 33A D S G G D S D2Pak IRFS4615PbF TO-262 IRFSL4615PbF G D S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Max. 33 24 140 144 0.96 ± 20 38 -55 to + 175 300 Units A W W/°C V V/ns c e °C Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy c d c i 109 See Fig. 14, 15, 22a, 22b, mJ A mJ Thermal Resistance Symbol RθJC RθJA Junction-to-Case Junction-to-Ambient (PCB Mount) j Parameter Typ. ––– ––– Max. 1.045 40 Units °C/W www.irf.com 1 12/18/08 IRFS/SL4615PbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS IGSS RG Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance Min. Typ. Max. Units 150 ––– ––– 3.0 ––– ––– ––– ––– ––– Conditions ––– 0.19 34.5 ––– ––– ––– ––– ––– 2.7 ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 5mA 42 mΩ VGS = 10V, ID = 21A 5.0 V VDS = VGS, ID = 100µA 20 VDS = 150V, VGS = 0V µA 250 VDS = 150V, VGS = 0V, TJ = 125°C VGS = 20V 100 nA -100 VGS = -20V f ™ ––– Ω Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) Min. Typ. Max. Units 35 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 26 8.6 9.0 17 15 35 25 20 1750 155 40 179 382 ––– 40 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S Conditions g hà VDS = 50V, ID = 21A ID = 21A VDS = 75V nC VGS = 10V ID = 21A, VDS =0V, VGS = 10V VDD = 98V ID = 21A ns RG = 7.3Ω VGS = 10V VGS = 0V VDS = 50V pF ƒ = 1.0MHz (See Fig.5) VGS = 0V, VDS = 0V to 120V (See Fig.11) VGS = 0V, VDS = 0V to 120V f f h g Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Min. Typ. Max. Units ––– ––– ––– ––– 33 A 140 Conditions MOSFET symbol showing the integral reverse G S D Ù Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time ––– ––– 1.3 V ––– 70 ––– ns ––– 83 ––– ––– 177 ––– nC TJ = 125°C ––– 247 ––– ––– 4.9 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) p-n junction diode. TJ = 25°C, IS = 21A, VGS = 0V VR = 100V, TJ = 25°C IF = 21A TJ = 125°C di/dt = 100A/µs TJ = 25°C f f Notes:  Repetitive rating; pulse width limited by max. junction temperature. ‚ Limited by TJmax, starting TJ = 25°C, L = 0.51mH RG = 25 Ω, IAS = 21A, VGS =10V. Part not recommended for use above this value . ƒ ISD ≤ 21A, di/dt ≤ 549A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. „ Pulse width ≤ 400µs; duty cycle ≤ 2%. … Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . † Coss eff. (ER) is a fixed capacitance that gives the same energy as ‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994 ˆ Rθ is measured at TJ approximately 90°C Coss while VDS is rising from 0 to 80% VDSS. 2 www.irf.com IRFS/SL4615PbF 1000 TOP VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 1000 TOP VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V 5.0V ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 100 100 BOTTOM 10 BOTTOM 10 5.0V 1 1 5.0V ≤60µs PULSE WIDTH Tj = 25°C 0.01 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) 0.1 ≤60µs PULSE WIDTH Tj = 175°C 0.1 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 RDS(on) , Drain-to-Source On Resistance (Normalized) Fig 2. Typical Output Characteristics 3.0 ID = 21A VGS = 10V ID, Drain-to-Source Current (A) 100 2.5 TJ = 175°C TJ = 25°C 2.0 10 1.5 1 VDS = 50V ≤60µs PULSE WIDTH 0.1 2 4 6 8 10 12 14 16 1.0 0.5 -60 -40 -20 0 20 40 60 80 100 120140160 180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 100000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd Fig 4. Normalized On-Resistance vs. Temperature 14.0 VGS, Gate-to-Source Voltage (V) 12.0 10.0 8.0 6.0 4.0 2.0 0.0 ID= 21A VDS= 120V VDS= 75V VDS= 30V 10000 C, Capacitance (pF) Ciss 1000 Coss Crss 100 10 1 10 100 1000 VDS, Drain-to-Source Voltage (V) 0 5 10 15 20 25 30 35 QG, Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRFS/SL4615PbF 1000 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100µsec 1msec 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) T J = 175°C 10 T J = 25°C 10 10msec DC 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 10 100 1000 VGS = 0V 1.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 40 35 30 25 20 15 10 5 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) Fig 8. Maximum Safe Operating Area 190 185 180 175 170 165 160 155 150 145 140 -60 -40 -20 0 20 40 60 80 100 120140 160180 T J , Temperature ( °C ) Id = 5mA ID, Drain Current (A) Fig 9. Maximum Drain Current vs. Case Temperature 3.0 EAS , Single Pulse Avalanche Energy (mJ) Fig 10. Drain-to-Source Breakdown Voltage 500 450 400 350 300 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) ID TOP 2.8A 5.3A BOTTOM 21A 2.5 2.0 Energy (µJ) 1.5 1.0 0.5 0.0 -20 0 20 40 60 80 100 120 140 160 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy Fig 12. Maximum Avalanche Energy vs. DrainCurrent 4 www.irf.com IRFS/SL4615PbF 10 Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 0.0001 0.001 τJ τJ τ1 τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ2 τ3 τ4 τ4 Ri (°C/W) 0.02324 0.26212 0.50102 0.25880 τi (sec) 0.000008 0.000106 0.001115 0.005407 Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 0.001 1E-006 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) 10 0.01 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 tav (sec) 1.0E-03 1.0E-02 1.0E-01 Fig 14. Typical Avalanche Current vs.Pulsewidth 120 100 80 60 40 20 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 21A Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com EAR , Avalanche Energy (mJ) 5 IRFS/SL4615PbF 6.0 VGS(th) , Gate threshold Voltage (V) 30 25 20 IRRM (A) 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) ID = 100µA ID = 250uA ID = 1.0mA ID = 1.0A IF = 14A V R = 100V TJ = 25°C TJ = 125°C 15 10 5 0 0 200 400 600 800 1000 diF /dt (A/µs) Fig 16. Threshold Voltage vs. Temperature 35 30 25 IRRM (A) Fig. 17 - Typical Recovery Current vs. dif/dt 800 IF = 21A V R = 100V TJ = 25°C TJ = 125°C QRR (A) 700 600 500 400 300 200 100 IF = 14A V R = 100V TJ = 25°C TJ = 125°C 20 15 10 5 0 0 200 400 600 800 1000 diF /dt (A/µs) 0 200 400 600 800 1000 diF /dt (A/µs) Fig. 18 - Typical Recovery Current vs. dif/dt 1000 900 800 700 QRR (A) Fig. 19 - Typical Stored Charge vs. dif/dt IF = 21A V R = 100V TJ = 25°C TJ = 125°C 600 500 400 300 200 100 0 200 400 600 800 1000 diF /dt (A/µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFS/SL4615PbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit VDS VGS RG RD Fig 22b. Unclamped Inductive Waveforms VDS 90% D.U.T. + - VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 10% VGS td(on) tr t d(off) tf Fig 23a. Switching Time Test Circuit Current Regulator Same Type as D.U.T. Fig 23b. Switching Time Waveforms Id Vds Vgs 50KΩ 12V .2µF .3µF D.U.T. VGS 3mA + V - DS Vgs(th) IG ID Current Sampling Resistors Qgs1 Qgs2 Qgd Qgodr www.irf.com Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform 7 IRFS/SL4615PbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information UCDTÃDTÃ6IÃDSA$"TÃXDUC GPUÃ8P9@Ã'!# 6TT@H7G@9ÃPIÃXXÃ!Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅGÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S A$"T 96U@Ã8P9@ `@6SÃÃ2Ã! X@@FÃ! GDI@ÃG 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ A$"T Q6SUÃIVH7@S 96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69ÃÃAS@@ QSP9V8UÃPQUDPI6G `@6SÃÃ2Ã! X@@FÃ! 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ www.irf.com Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 IRFS/SL4615PbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSG" "G GPUÃ8P9@à &'( 6TT@H7G@9ÃPIÃXXà (à ((& DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ `@6SÃ&Ã2à ((& X@@Fà ( GDI@Ã8 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69AS@@ QSP9V8UÃPQUDPI6G `@6SÃ&Ã2à ((& X@@Fà ( 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ www.irf.com Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 IRFS/SL4615PbF D2Pak (TO-263AB) Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. 10 IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 12/2008 www.irf.com
IRFSL4615PbF 价格&库存

很抱歉,暂时无法提供与“IRFSL4615PbF”相匹配的价格&库存,您可以联系我们找货

免费人工找货