0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFU1010Z

IRFU1010Z

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRFU1010Z - AUTOMOTIVE MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRFU1010Z 数据手册
PD - 96897 AUTOMOTIVE MOSFET Features Advanced Process Technology Ultra Low On-Resistance l175°C Operating Temperature lFast Switching lRepetitive Avalanche Allowed up to Tjmax l l IRFR1010Z IRFU1010Z HEXFET® Power MOSFET D VDSS = 55V RDS(on) = 7.5mΩ Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. Absolute Maximum Ratings Parameter G S ID = 42A D-Pak IRFR1010Z Max. 91 65 42 360 140 0.9 ± 20 I-Pak IRFU1010Z Units A ID @ T C = 2 5°C Continuous Drain Current, V GS @ 1 0V (Silicon Limited) ID @ T C = 1 00°C Continuous Drain Current, V GS @ 1 0V ID @ T C = 2 5°C IDM Continuous Drain Current, V GS @ 1 0V (Package Limited) Pulsed Drain Current ™ P D @ T C = 2 5°C Power Dissipation V GS E AS (Tested ) IAR E AR TJ T STG Linear Derating Factor Gate-to-Source Voltage W W/°C V mJ A mJ E AS (Thermally limited) S ingle Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value Avalanche Current d Ù h 110 220 See Fig.12a, 12b, 15, 16 -55 to + 175 Repetitive Avalanche Energy O perating Junction and Storage Temperature Range g °C 300 (1.6mm from case ) 10 lbf in (1.1N m) Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw Thermal Resistance R θJC R θJA R θJA J unction-to-Case y y j Parameter Typ. Max. 1.11 40 110 Units °C/W J unction-to-Ambient (PCB mount) J unction-to-Ambient j ij ––– ––– ––– HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 9/29/04 IRFR/U1010Z Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Coss Coss Coss eff. Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. Typ. Max. Units 55 ––– ––– 2.0 31 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.051 5.8 ––– ––– ––– ––– ––– ––– 63 17 23 17 76 42 48 4.5 7.5 2840 470 250 1630 360 560 ––– ––– 7.5 4.0 ––– 20 250 200 -200 95 ––– ––– ––– ––– ––– ––– ––– nH ––– ––– ––– ––– ––– ––– ––– pF ns nC nA V mΩ V S µA Conditions VGS = 0V, ID = 250µA VGS = 10V, ID = 42A VDS = 25V, ID = 42A VDS = 55V, VGS = 0V VDS = 55V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V ID = 42A VDS = 44V VGS = 10V VDD = 28V ID = 42A RG = 7.6 Ω VGS = 10V V/°C Reference to 25°C, ID = 1mA VDS = VGS, ID = 100µA e e e Between lead, 6mm (0.25in.) from package and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz G D S VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 44V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 44V f Source-Drain Ratings and Characteristics Parameter IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– 24 20 42 A 360 1.3 36 30 V ns nC Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 42A, VGS = 0V TJ = 25°C, IF = 42A, VDD = 28V di/dt = 100A/µs Ù e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 2 www.irf.com IRFR/U1010Z 1000 TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 1000 TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 100 100 BOTTOM BOTTOM 10 10 4.5V 4.5V 1 0.1 1 ≤60µs PULSE WIDTH Tj = 25°C 1 100 0.1 1 10 ≤60µs PULSE WIDTH Tj = 175°C 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 Gfs , Forward Transconductance (S) 120 100 80 60 40 20 0 0 20 40 60 80 100 ID,Drain-to-Source Current (A) TJ = 25°C ID, Drain-to-Source Current(Α) 100 TJ = 175°C 10 TJ = 175°C 1 TJ = 25°C VDS = 25V VDS = 10V 380µs PULSE WIDTH 0.1 2 4 ≤60µs PULSE WIDTH 6 8 10 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance vs. Drain Current www.irf.com 3 IRFR/U1010Z 5000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd 20 VGS, Gate-to-Source Voltage (V) ID= 42A VDS = 44V VDS= 28V VDS= 11V 4000 16 C, Capacitance(pF) 3000 Ciss 12 2000 8 1000 Coss Crss 4 0 10 100 0 1 0 20 40 60 80 100 VDS , Drain-to-Source Voltage (V) QG Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 1000.00 10000 ID, Drain-to-Source Current (A) OPERATION IN THIS AREA LIMITED BY R DS (on) ISD , Reverse Drain Current (A) 100.00 TJ = 175°C 10.00 1000 100 100µsec 1msec 10msec Tc = 25°C Tj = 175°C Single Pulse 1 10 VDS , Drain-toSource Voltage (V) 10 1.00 TJ = 25°C VGS = 0V 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 VSD , Source-to-Drain Voltage (V) 1 0.10 0.1 DC 100 Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRFR/U1010Z 100 LIMITED BY PACKAGE 80 ID , Drain Current (A) RDS(on) , Drain-to-Source On Resistance (Normalized) 2.5 ID = 42A 2.0 VGS = 10V 60 1.5 40 20 1.0 0 25 50 75 100 125 150 175 TC , Case Temperature (°C) 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Normalized On-Resistance vs. Temperature 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 0.3854 0.000251 0.3138 0.4102 0.001092 0.015307 τ1 τ2 0.01 Ci= τi/Ri Ci τi/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 0.001 1E-006 1E-005 0.0001 0.001 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFR/U1010Z EAS, Single Pulse Avalanche Energy (mJ) 15V 500 VDS L DRIVER 400 ID 7.6A 11A BOTTOM 42A TOP RG VGS 20V D.U.T IAS tp + V - DD 300 A 0.01Ω 200 Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp 100 0 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) I AS Fig 12b. Unclamped Inductive Waveforms QG Fig 12c. Maximum Avalanche Energy vs. Drain Current 10 V QGS QGD VGS(th) Gate threshold Voltage (V) 4.0 VG 3.5 ID = 1.0mA ID = 100µA ID = 250µA 3.0 Charge Fig 13a. Basic Gate Charge Waveform 2.5 2.0 L 0 1.5 DUT 1K VCC 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 TJ , Temperature ( °C ) Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage vs. Temperature 6 www.irf.com IRFR/U1010Z 1000 Duty Cycle = Single Pulse 100 Avalanche Current (A) 0.01 10 0.05 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth 120 EAR , Avalanche Energy (mJ) 100 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 42A 80 60 40 20 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com 7 IRFR/U1010Z Driver Gate Drive D.U.T + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs RD VDS VGS RG 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % D.U.T. + -VDD Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRFR/U1010Z D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) 6.73 (.265) 6.35 (.250) -A5.46 (.215) 5.21 (.205) 4 6.45 (.245) 5.68 (.224) 10.42 (.410) 9.40 (.370) 0.51 (.020) MIN. LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 3X 2X 1.14 (.045) 0.76 (.030) 0.89 (.035) 0.64 (.025) 0.25 (.010) M AMB NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 4.57 (.180) 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-252AA. 4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP, SOLDER DIP MAX. +0.16 (.006). 0.58 (.023) 0.46 (.018) 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) 6.22 (.245) 5.97 (.235) 1.02 (.040) 1.64 (.025) 1 2 3 -B1.52 (.060) 1.15 (.045) 2.28 (.090) D-Pak (TO-252AA) Part Marking Information EXAMPLE: THIS IS AN IRFR120 WITH AS SEMBLY LOT CODE 1234 ASS EMBLED ON WW 16, 1999 IN THE AS SEMBLY LINE "A" N ote: "P" in ass embly line pos ition indicates "Lead-Free" INTERNATIONAL RECTIFIER LOGO AS SEMBLY LOT CODE PART NUMBER IRFR120 12 916A 34 DAT E CODE YEAR 9 = 1999 WEEK 16 LINE A OR INTERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER IRFR120 12 P916A 34 DATE CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPTIONAL) YEAR 9 = 1999 WEEK 16 A = ASS EMBLY SITE CODE www.irf.com 9 IRFR/U1010Z I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) 6.73 (.265) 6.35 (.250) -A5.46 (.215) 5.21 (.205) 4 6.45 (.245) 5.68 (.224) 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 0.58 (.023) 0.46 (.018) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 1.52 (.060) 1.15 (.045) 1 -B2.28 (.090) 1.91 (.075) 2 3 6.22 (.245) 5.97 (.235) NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 9.65 (.380) 8.89 (.350) 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-252AA. 4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP, SOLDER DIP MAX. +0.16 (.006). 3X 1.14 (.045) 0.76 (.030) 3X 0.89 (.035) 0.64 (.025) M AMB 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) 2.28 (.090) 2X 0.25 (.010) I-Pak (TO-251AA) Part Marking Information EXAMPLE: T HIS IS AN IRFU120 WIT H AS S EMBLY LOT CODE 5678 AS S EMBLED ON WW 19, 1999 IN T HE AS SEMBLY LINE "A" Note: "P" in ass embly line pos ition indicates "Lead-Free" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER IRFU120 919A 56 78 DAT E CODE YEAR 9 = 1999 WEEK 19 LINE A OR INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER IRFU120 56 78 DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 19 A = AS S EMBLY S ITE CODE 10 www.irf.com IRFR/U1010Z D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR TRL 16.3 ( .641 ) 15.7 ( .619 ) 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481.  Repetitive rating; pulse width limited by „ Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). ‚ Limited by TJmax, starting TJ = 25°C, L = 0.13mH … Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 42A, VGS =10V. Part not avalanche performance. recommended for use above this value. † This value determined from sample failure population. 100% ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. ‡ When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994 ˆ Rθ is measured at TJ approximately 90°C Data and specifications subject to change without notice. This product has been designed for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. Notes: IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.9/04 www.irf.com 11
IRFU1010Z 价格&库存

很抱歉,暂时无法提供与“IRFU1010Z”相匹配的价格&库存,您可以联系我们找货

免费人工找货