0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFU1018EPBF

IRFU1018EPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRFU1018EPBF - HEXFET TM Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRFU1018EPBF 数据手册
PD - 97129 IRFR1018EPbF IRFU1018EPbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits HEXFET® Power MOSFET D G S Benefits l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited) 60V 7.1m: 8.4m: 79A c 56A D-Pak IRFR1018EPbF I-Pak IRFU1018EPbF G D S Gate Drain Max. 79c 56c 56 315 110 0.76 ± 20 21 -55 to + 175 300 Source Units Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) Pulsed Drain Current d Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery f Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) A W W/°C V V/ns °C Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy e Avalanche Current d Repetitive Avalanche Energy g 88 47 11 mJ A mJ Thermal Resistance Symbol RθJC RθJA RθJA Parameter Junction-to-Case k Junction-to-Ambient (PCB Mount) jk Junction-to-Ambient k Typ. ––– ––– ––– Max. 1.32 40 110 Units °C/W Notes  through ‰ are on page 2 www.irf.com 1 3/8/08 IRFR/U1018EPbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS ΔV(BR)DSS/ΔTJ RDS(on) VGS(th) IDSS IGSS Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units 60 ––– ––– ––– 0.073 ––– ––– 7.1 8.4 2.0 ––– 4.0 ––– ––– 20 ––– ––– 250 ––– ––– 100 ––– ––– -100 Conditions V VGS = 0V, ID = 250μA V/°C Reference to 25°C, ID = 5mAd mΩ VGS = 10V, ID = 47A g V VDS = VGS, ID = 100μA μA VDS = 60V, VGS = 0V VDS = 48V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync RG(int) td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Internal Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units 110 ––– ––– ––– ––– ––– Conditions VDS = 50V, ID = 47A ID = 47A VDS = 30V VGS = 10V g ID = 47A, VDS =0V, VGS = 10V VDD = 39V ID = 47A RG = 10Ω VGS = 10V g VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 60V i VGS = 0V, VDS = 0V to 60V h ––– 46 10 12 34 0.73 13 35 55 46 2290 270 130 390 630 ––– 69 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Ω ––– ––– ––– ––– ––– ––– ––– Effective Output Capacitance (Energy Related)h ––– ––– Effective Output Capacitance (Time Related)g ns pF Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) d Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time Min. Typ. Max. Units ––– ––– ––– ––– 79c 315 A Conditions MOSFET symbol showing the integral reverse G D S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 47A, VGS = 0V g VR = 51V, ––– 26 39 ns TJ = 25°C IF = 47A TJ = 125°C ––– 31 47 di/dt = 100A/μs g ––– 24 36 nC TJ = 25°C TJ = 125°C ––– 35 53 ––– 1.8 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes:  Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 56A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. ‚ Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.08mH RG = 25Ω, IAS = 47A, VGS =10V. Part not recommended for use above this value. „ ISD ≤ 47A, di/dt ≤ 1668A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. … Pulse width ≤ 400μs; duty cycle ≤ 2%. † Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. ‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom ‰ Rθ is measured at TJ approximately 90°C. Coss while VDS is rising from 0 to 80% VDSS. mended footprint and soldering techniques refer to application note #AN-994. 2 www.irf.com IRFR/U1018EPbF 1000 TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V 1000 TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V ID, Drain-to-Source Current (A) 100 ID, Drain-to-Source Current (A) BOTTOM 100 BOTTOM 4.5V 10 10 4.5V ≤60μs PULSE WIDTH Tj = 25°C 1 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) 1 0.1 1 ≤60μs PULSE WIDTH Tj = 175°C 10 100 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 RDS(on) , Drain-to-Source On Resistance (Normalized) Fig 2. Typical Output Characteristics 2.5 ID = 47A 2.0 VGS = 10V ID, Drain-to-Source Current (A) 100 TJ = 175°C 10 1.5 1 TJ = 25°C VDS = 25V 1.0 ≤60μs PULSE WIDTH 0.1 2 3 4 5 6 7 8 9 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 4000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd Fig 4. Normalized On-Resistance vs. Temperature 16 VGS, Gate-to-Source Voltage (V) ID= 47A VDS = 48V VDS = 30V VDS = 12V 3000 C, Capacitance (pF) Ciss 2000 12 8 1000 Coss Crss 1 10 VDS , Drain-to-Source Voltage (V) 100 4 0 0 0 10 20 30 40 50 60 QG Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRFR/U1018EPbF 1000 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS (on) 100 1000 TJ = 175°C 100 1msec 10 100μsec TJ = 25°C 10 LIMITED BY PACKAGE 10msec Tc = 25°C Tj = 175°C Single Pulse 0.1 1 1 VGS = 0V 0.1 0.0 0.5 1.0 1.5 2.0 VSD , Source-to-Drain Voltage (V) 1 DC 10 100 0.1 VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 80 LIMITED BY PACKAGE 60 V(BR)DSS, Drain-to-Source Breakdown Voltage (V) Fig 8. Maximum Safe Operating Area 80 Id = 5mA ID, Drain Current (A) 75 40 70 20 65 0 25 50 75 100 125 150 175 TC, Case Temperature (°C) 60 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 TJ , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Case Temperature 0.8 Fig 10. Drain-to-Source Breakdown Voltage 400 EAS, Single Pulse Avalanche Energy (mJ) 350 300 250 200 150 100 50 0 0.6 ID 5.3A 11A BOTTOM 47A TOP Energy (μJ) 0.4 0.2 0.0 0 10 20 30 40 50 60 25 50 75 100 125 150 175 VDS, Drain-to-Source Voltage (V) Starting TJ, Junction Temperature (°C) 4 Fig 11. Typical COSS Stored Energy Fig 12. Maximum Avalanche Energy vs. DrainCurrent www.irf.com IRFR/U1018EPbF 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 τJ τJ τ1 τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ4 τ2 τ3 τ4 0.01 Ci= τi/Ri Ci i/Ri Ri (°C/W) 0.026741 0.28078 0.606685 0.406128 τι (sec) 0.000007 0.000091 0.000843 0.005884 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Δ Tj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) 0.01 10 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth 100 EAR , Avalanche Energy (mJ) 80 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 47A 60 40 20 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) 175 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFR/U1018EPbF 4.5 ID = 1.0A 14 12 10 IRR (A) VGS(th) Gate threshold Voltage (V) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 -75 -50 -25 0 25 50 75 ID = 1.0mA ID = 250μA ID = 100μA IF = 32A VR = 51V TJ = 25°C TJ = 125°C 8 6 4 2 0 0 200 400 600 800 1000 diF /dt (A/μs) 100 125 150 175 TJ , Temperature ( °C ) Fig 16. Threshold Voltage vs. Temperature 14 12 10 IRR (A) Fig. 17 - Typical Recovery Current vs. dif/dt 320 IF = 32A VR = 51V TJ = 25°C TJ = 125°C IF = 47A VR = 51V TJ = 25°C TJ = 125°C QRR (A) 280 240 200 160 120 80 40 0 8 6 4 2 0 0 200 400 600 800 1000 diF /dt (A/μs) 0 200 400 600 800 1000 diF /dt (A/μs) Fig. 18 - Typical Recovery Current vs. dif/dt 320 280 240 200 QRR (A) Fig. 19 - Typical Stored Charge vs. dif/dt IF = 47A VR = 51V TJ = 25°C TJ = 125°C 160 120 80 40 0 0 200 400 600 800 1000 diF /dt (A/μs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFR/U1018EPbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer *** D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG * • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD ** + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel *** VGS = 5V for Logic Level Devices Fig 21. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit RD Fig 22b. Unclamped Inductive Waveforms VDS VGS RG 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 90% D.U.T. + VDS -VDD 10% VGS td(on) tr td(off) tf Fig 23a. Switching Time Test Circuit Fig 23b. Switching Time Waveforms Id Vds Vgs L 0 DUT 20K 1K S VCC Vgs(th) Qgodr Qgd Qgs2 Qgs1 Fig 24a. Gate Charge Test Circuit www.irf.com Fig 24b. Gate Charge Waveform 7 IRFR/U1018EPbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information EXAMPLE: T HIS IS AN IRFR120 WIT H AS S EMBLY LOT CODE 1234 AS S EMBLED ON WW 16, 2001 IN T HE AS S EMBLY LINE "A" Note: "P" in as s embly line pos ition indicates "Lead-F ree" "P" in as s embly line pos ition indicates "Lead-F ree" qualification to the cons umer-level INT ERNAT IONAL RECT IF IER LOGO AS S EMBLY LOT CODE PART NUMBER IRFR120 116A 12 34 DAT E CODE YEAR 1 = 2001 WEEK 16 LINE A OR INT ERNAT IONAL RECT IF IER LOGO AS S EMBLY LOT CODE PART NUMBER IRFR120 12 34 DAT E CODE P = DES IGNAT ES LEAD-F REE PRODUCT (OPT IONAL) P = DES IGNAT ES LEAD-F REE PRODUCT QUALIF IED T O T HE CONS UMER LEVEL (OPT IONAL) YEAR 1 = 2001 WEEK 16 A = AS S EMBLY S IT E CODE Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 8 www.irf.com IRFR/U1018EPbF I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-251AA) Part Marking Information EXAMPLE: THIS IS AN IRFU120 WITH AS S EMBLY LOT CODE 5678 AS S EMBLED ON WW 19, 2001 IN T HE AS S EMBLY LINE "A" Note: "P" in as s embly line pos ition indicates Lead-Free" INT ERNAT IONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER IRFU120 119A 56 78 DATE CODE YEAR 1 = 2001 WEEK 19 LINE A OR INT ERNAT IONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER IRFU120 56 78 DATE CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 1 = 2001 WEEK 19 A = AS S EMBLY S ITE CODE Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com 9 IRFR/U1018EPbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR TRL 16.3 ( .641 ) 15.7 ( .619 ) 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.3/08 10 www.irf.com
IRFU1018EPBF 价格&库存

很抱歉,暂时无法提供与“IRFU1018EPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货