0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFU3607PBF

IRFU3607PBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRFU3607PBF - HEXFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRFU3607PBF 数据手册
PD - 97312 IRFR3607PbF IRFU3607PbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits G HEXFET® Power MOSFET D Benefits l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability S VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited) D 75V 7.34mΩ 9.0mΩ 80Ac 56A S G S D G D-Pak I-Pak IRFR3607PbF IRFU3607PbF G D S Gate Drain Max. 80c 56c 56 310 140 0.96 ± 20 27 -55 to + 175 300 Source Units A Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) Pulsed Drain Current d Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery f Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) W W/°C V V/ns °C Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy e Avalanche Current d Repetitive Avalanche Energy g 120 46 14 mJ A mJ Thermal Resistance Symbol RθJC RθJA RθJA Parameter Junction-to-Case k Junction-to-Ambient j Junction-to-Ambient (PCB Mount) jk Typ. ––– ––– ––– Max. 1.045 50 110 Units °C/W www.irf.com 1 03/04/08 IRFR/U3607PbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS IGSS Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units 75 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– 0.096 ––– 7.34 9.0 ––– 4.0 ––– 20 ––– 250 ––– 100 ––– -100 Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mAd mΩ VGS = 10V, ID = 46A g V VDS = VGS, ID = 100µA µA VDS = 75V, VGS = 0V VDS = 60V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync RG(int) td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Internal Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units 170 ––– ––– ––– ––– ––– Conditions VDS = 50V, ID = 46A ID = 46A VDS = 38V VGS = 10V g ID = 46A, VDS =0V, VGS = 10V ––– 56 13 16 40 0.55 16 110 43 96 3070 280 130 380 610 ––– 84 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Ω ––– ––– ––– ––– ––– ––– ––– j ––– Effective Output Capacitance (Energy Related) ––– Effective Output Capacitance (Time Related)h ns pF VDD = 49V ID = 46A RG = 6.8Ω VGS = 10V g VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 60V j VGS = 0V, VDS = 0V to 60V h Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) d Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time Min. Typ. Max. Units ––– ––– ––– ––– 80c 310 A Conditions MOSFET symbol showing the integral reverse G S D ––– ––– 1.3 V ––– 33 50 ns ––– 39 59 ––– 32 48 nC TJ = 125°C ––– 47 71 ––– 1.9 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) p-n junction diode. TJ = 25°C, IS = 46A, VGS = 0V g TJ = 25°C VR = 64V, TJ = 125°C IF = 46A di/dt = 100A/µs g TJ = 25°C Notes:  Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 56A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. ‚ Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.12mH RG = 25Ω, IAS = 46A, VGS =10V. Part not recommended for use above this value. „ ISD ≤ 46A, di/dt ≤ 1920A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. … Pulse width ≤ 400µs; duty cycle ≤ 2%. † Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. ‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. Coss while VDS is rising from 0 to 80% VDSS. ‰ Rθ is measured at TJ approximately 90°C. 2 www.irf.com IRFR/U3607PbF 1000 TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V 1000 TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V ID, Drain-to-Source Current (A) 100 BOTTOM ID, Drain-to-Source Current (A) BOTTOM 100 4.5V 10 4.5V ≤60µs PULSE WIDTH Tj = 25°C 1 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) 10 0.1 1 ≤60µs PULSE WIDTH Tj = 175°C 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 Fig 2. Typical Output Characteristics 3.0 RDS(on) , Drain-to-Source On Resistance ID = 80A 2.5 VGS = 10V ID, Drain-to-Source Current (A) 100 10 T J = 175°C T J = 25°C (Normalized) 2.0 1.5 1 VDS = 25V ≤60µs PULSE WIDTH 0.1 2 3 4 5 6 7 8 1.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 100000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, C ds SHORTED Crss = Cgd Coss = Cds + Cgd Fig 4. Normalized On-Resistance vs. Temperature 12.0 ID= 46A VGS , Gate-to-Source Voltage (V) 10.0 C, Capacitance (pF) VDS= 24V VDS= 15V 10000 Ciss Coss Crss 8.0 6.0 1000 4.0 2.0 100 1 10 VDS, Drain-to-Source Voltage (V) 100 0.0 0 10 20 30 40 50 60 Q G , Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRFR/U3607PbF 1000 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 T J = 175°C 10 T J = 25°C 1 VGS = 0V 0.1 0.0 0.5 1.0 1.5 2.0 VSD, Source-to-Drain Voltage (V) ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 1msec 100µsec 10 Tc = 25°C Tj = 175°C Single Pulse 1 1 10msec DC 10 VDS, Drain-to-Source Voltage (V) 100 Fig 7. Typical Source-Drain Diode Forward Voltage V(BR)DSS , Drain-to-Source Breakdown Voltage (V) Fig 8. Maximum Safe Operating Area 100 Id = 5mA 95 80 70 60 ID, Drain Current (A) Limited By Package 90 50 40 30 20 10 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) 85 80 75 70 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 T J , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Case Temperature 1.20 EAS , Single Pulse Avalanche Energy (mJ) Fig 10. Drain-to-Source Breakdown Voltage 500 450 400 350 300 250 200 150 100 50 0 ID 5.6A 11A BOTTOM 46A TOP 1.00 0.80 Energy (µJ) 0.60 0.40 0.20 0.00 -10 0 10 20 30 40 50 60 70 80 25 50 75 100 125 150 175 VDS, Drain-to-Source Voltage (V) Starting T J , Junction Temperature (°C) Fig 11. Typical COSS Stored Energy Fig 12. Maximum Avalanche Energy vs. DrainCurrent 4 www.irf.com IRFR/U3607PbF 10.00 Thermal Response ( Z thJC ) °C/W 1.00 D = 0.50 0.20 0.10 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.00 1E-006 τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ2 τ3 τ4 τ4 Ri (°C/W) 0.01109 0.26925 0.49731 0.26766 τi (sec) 0.000003 0.000130 0.001301 0.008693 τ1 Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 1E-005 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Duty Cycle = Single Pulse 100 Avalanche Current (A) Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse) 0.01 10 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 tav (sec) 1.0E-03 1.0E-02 1.0E-01 Fig 14. Typical Avalanche Current vs.Pulsewidth 150 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 46A EAR , Avalanche Energy (mJ) 125 100 75 50 25 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) 175 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFR/U3607PbF 4.5 VGS(th) , Gate Threshold Voltage (V) 20 IF = 31A V R = 64V 15 TJ = 25°C TJ = 125°C 4.0 3.5 IRR (A) 3.0 2.5 2.0 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) ID = 100µA ID = 250µA ID = 1.0mA ID = 1.0A 10 5 0 0 200 400 600 800 1000 diF /dt (A/µs) Fig 16. Threshold Voltage vs. Temperature 20 IF = 46A V R = 64V 15 TJ = 25°C TJ = 125°C Q RR (A) Fig. 17 - Typical Recovery Current vs. dif/dt 560 480 400 320 240 160 80 IF = 31A V R = 64V TJ = 25°C TJ = 125°C IRR (A) 10 5 0 0 200 400 600 800 1000 diF /dt (A/µs) 0 0 200 400 600 800 1000 diF /dt (A/µs) Fig. 18 - Typical Recovery Current vs. dif/dt 560 480 400 Q RR (A) Fig. 19 - Typical Stored Charge vs. dif/dt IF = 46A V R = 64V TJ = 25°C TJ = 125°C 320 240 160 80 0 0 200 400 600 800 1000 diF /dt (A/µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFR/U3607PbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01Ω I AS Fig 21a. Unclamped Inductive Test Circuit LD VDS Fig 21b. Unclamped Inductive Waveforms VDS 90% + VDD - D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% 10% VGS td(on) tr td(off) tf Fig 22a. Switching Time Test Circuit Fig 22b. Switching Time Waveforms Id Vds Vgs L VCC 0 DUT 1K Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 23a. Gate Charge Test Circuit www.irf.com Fig 23b. Gate Charge Waveform 7 IRFR/U3607PbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSAS XDUCÃ6TT@H7G` GPUÃ8P9@à !"# %Ã! ! Q6SUÃIVH7@S DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G@9ÃPIÃXXà DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ6Å ,5)5 $   96U@Ã8P9@ `@6Sà X@@Fà GDI@Ã6 Ã2Ã! % I‚‡r)ÃÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚ vqvph‡r†ÃÅGrhqA…rrÅ 6TT@H7G` GPUÃ8P9@ ÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚Ãvqvph‡r† ÅGrhqA…rrÅĈhyvsvph‡v‚Ã‡‚ÇurÃp‚†ˆ€r…yr‰ry Q6SUÃIVH7@S 25 DIU@SI6UDPI6G S@8UDAD@S GPBP ,5)5   96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69AS@@ QSP9V8UÃPQUDPI6G QÃ2Ã9@TDBI6U@TÃG@69AS@@ QSP9V8UÃRV6GDAD@9ÃUPÃUC@ 8PITVH@SÃG@W@GÃPQUDPI6G `@6Sà X@@Fà Ã2Ã! % 6TT@H7G` GPUÃ8P9@ 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRFR/U3607PbF I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-251AA) Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSAV ! XDUCÃ6TT@H7G` GPUÃ8P9@Ã$%&' 6TT@H7G@9ÃPIÃXXà (Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ6Å I‚‡r)ÃÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚ vqvph‡r†ÃGrhqA…rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S ,5)8 $   96U@Ã8P9@ `@6Sà Ã2Ã! X@@Fà ( GDI@Ã6 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S ,5)8   96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69AS@@ QSP9V8UÃPQUDPI6G `@6Sà Ã2Ã! X@@Fà ( 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRFR/U3607PbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR TRL 16.3 ( .641 ) 15.7 ( .619 ) 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. 10 IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 03/08 www.irf.com
IRFU3607PBF 价格&库存

很抱歉,暂时无法提供与“IRFU3607PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货