PD-91277
IRFZ46N
HEXFET® Power MOSFET
l l l l l l
Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175°C Operating Temperature Fast Switching Fully Avalanche Rated
D
VDSS = 55V RDS(on) = 16.5mΩ
G S
ID = 53A
Description
Advanced HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.
TO-220AB
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 srew
Max.
53 37 180 107 0.71 ± 20 28 11 5.0 -55 to + 175 300 (1.6mm from case ) 10 lbf•in (1.1N•m)
Units
A W W/°C V A mJ V/ns °C
Thermal Resistance
Parameter
RθJC RθCS RθJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient
Typ.
––– 0.50 –––
Max.
1.4 ––– 62
Units
°C/W
www.irf.com
1
01/24/01
IRFZ46N
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on) VGS(th) gfs IDSS IGSS Qg Q gs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss EAS
Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Single Pulse Avalanche Energy
Min. 55 ––– ––– 2.0 19 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
Typ. ––– 0.057 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 14 76 52 57 4.5 7.5 1696 407 110 583
Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 16.5 mΩ VGS = 10V, ID = 28A 4.0 V VDS = VGS, ID = 250µA ––– S VDS = 25V, ID = 28A 25 VDS = 55V, VGS = 0V µA 250 VDS = 44V, VGS = 0V, TJ = 150°C 100 VGS = 20V nA -100 VGS = -20V 72 ID = 28A 11 nC VDS = 44V 26 VGS = 10V, See Fig. 6 and 13 ––– VDD = 28V ––– ID = 28A ns ––– RG = 12 Ω ––– VGS = 10V, See Fig. 10 Between lead, ––– 6mm (0.25in.) nH G from package ––– and center of die contact ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz, See Fig. 5 152 mJ IAS = 28A, L = 389µH
D
S
Source-Drain Ratings and Characteristics
IS
ISM
VSD trr Qrr ton Notes:
Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min. Typ. Max. Units
Conditions D MOSFET symbol ––– ––– 53 showing the A G integral reverse ––– ––– 180 S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, I S = 28A, VGS = 0V ––– 67 101 ns TJ = 25°C, IF = 28A ––– 208 312 nC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
ISD ≤ 28A, di/dt ≤ 220A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C
Starting TJ = 25°C, L = 389µH
RG = 25Ω, IAS = 28A. (See Figure 12)
Pulse width ≤ 400µs; duty cycle ≤ 2%.
This is a typical value at device destruction and represents
operation outside rated limits.
This is a calculated value limited to TJ = 175°C.
2
www.irf.com
IRFZ46N
1000
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
100
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
1000
100
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
4.5V
10
10
4.5V
1 0.1
20µs PULSE WIDTH TJ = 25 °C
1 10 100
1 0.1
20µs PULSE WIDTH TJ = 175 °C
1 10 100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
3.0
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID = 53A
I D , Drain-to-Source Current (A)
TJ = 25 ° C
2.5
100
2.0
TJ = 175 ° C
1.5
10
1.0
0.5
1 4 5 6 7
V DS = 25V 20µs PULSE WIDTH 8 9 10 11
0.0 -60 -40 -20
VGS = 10V
0 20 40 60 80 100 120 140 160 180
VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature ( ° C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRFZ46N
3000
2500
VGS , Gate-to-Source Voltage (V)
C, Capacitance (pF)
C iss
2000
VGS = Ciss = Crss = Coss = 0V, f = 1MHz Cgs + Cgd , Cds SHORTED Cgd Cds + Cgd
20
ID = 28A V DS = 44V V DS = 27V V DS = 11V
16
12
1500
Coss
8
1000
500
Crss
4
0 1 10 100
0 0 10 20 30
FOR TEST CIRCUIT SEE FIGURE 13
40 50 60 70
VDS , Drain-to-Source Voltage (V)
QG , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
1000
1000 OPERATION IN THIS AREA LIMITED BY R DS (on)
ISD , Reverse Drain Current (A)
100
TJ = 175 ° C
ID, Drain-to-Source Current (A)
100
10
10
100µsec 1msec
TJ = 25 ° C
1
1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 10 VDS , Drain-toSource Voltage (V) 10msec
0.1 0.2
V GS = 0 V
0.7 1.2 1.7 2.2
VSD ,Source-to-Drain Voltage (V)
100
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRFZ46N
60
VDS
50
RD
VGS RG
D.U.T.
+
ID , Drain Current (A)
40
-VDD
VGS
30
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
20
Fig 10a. Switching Time Test Circuit
10
VDS 90%
0 25 50 75 100 125 150 175
TC , Case Temperature ( ° C)
10% VGS
td(on) tr t d(off) tf
Fig 9. Maximum Drain Current Vs. Case Temperature
Fig 10b. Switching Time Waveforms
10
Thermal Response (Z thJC )
1
D = 0.50 0.20 0.10
0.1
0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE)
0.01 0.00001
Notes: 1. Duty factor D = t 1 / t 2 2. Peak T = P DM x ZthJC + TC J 0.0001 0.001 0.01 0.1
PDM t1 t2 1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFZ46N
EAS , Single Pulse Avalanche Energy (mJ)
350 300 250 200 150 100 50 0 25 50 75 100 125 150 175
1 5V
VD S
L
D R IV E R
TOP BOTTOM ID 11A 20A 28A
RG
20V
D .U .T
IA S tp 0 .01 Ω
+ - VD D
A
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D SS tp
Starting TJ , Junction Temperature ( ° C)
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
IAS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50KΩ
QG
12V
.2µF
.3µF
VGS
QGS VG QGD
VGS
3mA
D.U.T.
+ V - DS
IG
ID
Charge
Current Sampling Resistors
Fig 13a. Basic Gate Charge Waveform
Fig 13b. Gate Charge Test Circuit
6
www.irf.com
IRFZ46N
Peak Diode Recovery dv/dt Test Circuit
D.U.T*
+
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
-
+
RG VGS • dv/dt controlled by RG • ISD controlled by Duty Factor "D" • D.U.T. - Device Under Test
+ VDD
*
Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive P.W. Period D=
P.W. Period
[VGS=10V ] ***
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
[VDD]
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple ≤ 5%
[ ISD ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 14. For N-channel HEXFET® power MOSFETs
www.irf.com
7
IRFZ46N
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 ( .11 3 ) 2.62 ( .10 3 ) 10 .54 ( .4 15 ) 10 .29 ( .4 05 ) 3 .7 8 ( .149 ) 3 .5 4 ( .139 ) -A 6.47 ( .25 5 ) 6.10 ( .24 0 ) -B 4.69 ( .18 5 ) 4.20 ( .16 5 ) 1 .32 ( .05 2 ) 1 .22 ( .04 8 )
4 1 5.24 ( .60 0 ) 1 4.84 ( .58 4 )
1.15 ( .04 5 ) M IN 1 2 3
L E A D A S S IG NM E NT S 1 - GATE 2 - D R A IN 3 - S O U RC E 4 - D R A IN
1 4.09 ( .55 5 ) 1 3.47 ( .53 0 )
4.06 ( .16 0 ) 3.55 ( .14 0 )
3X 3X 1 .4 0 ( .0 55 ) 1 .1 5 ( .0 45 )
0.93 ( .03 7 ) 0.69 ( .02 7 ) M BAM
3X
0.55 ( .02 2 ) 0.46 ( .01 8 )
0 .3 6 ( .01 4 )
2.54 ( .10 0 ) 2X N O TE S : 1 D IM E N S IO N IN G & TO L E R A N C ING P E R A N S I Y 1 4.5M , 1 9 82. 2 C O N TR O L LIN G D IM E N S IO N : IN C H
2 .92 ( .11 5 ) 2 .64 ( .10 4 )
3 O U T LIN E C O N F O R M S TO JE D E C O U T LIN E TO -2 20 A B . 4 H E A TS IN K & LE A D M E A S U R E M E N T S D O N O T IN C LU DE B U R R S .
TO-220AB Part Marking Information
E X A M P L E : TH IS IS A N IR F1 0 1 0 W IT H A S S E M B L Y LOT C ODE 9B1M
A
IN TE R N A TIO N A L R E C TIF IE R LOGO ASSEMBLY LOT CO DE
PART NU MBER IR F 10 1 0 9246 9B 1M
D A TE C O D E (Y Y W W ) YY = YEAR W W = W EEK
Data and specifications subject to change without notice. This product has been designed and qualified for the automotive [Q101] market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/00
8
www.irf.com