PD 91601A
IRG4BC20FD
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
• Fast: optimized for medium operating frequencies ( 1-5 kHz in hard switching, >20 kHz in resonant mode). • Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3 • IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations • Industry standard TO-220AB package
C
Fast CoPack IGBT
VCES = 600V
G E
VCE(on) typ. = 1.66V
@VGE = 15V, IC = 9.0A
n-cha nn el
Benefits
• Generation -4 IGBTs offer highest efficiencies available • IGBTs optimized for specific application conditions • HEXFRED diodes optimized for performance with IGBTs. Minimized recovery characteristics require less/no snubbing • Designed to be a "drop-in" replacement for equivalent industry-standard Generation 3 IR IGBTs
TO-220AB
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Q Clamped Inductive Load Current R Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw.
Max.
600 16 9.0 64 64 7.0 32 ± 20 60 24 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m)
Units
V
A
V W
°C
Thermal Resistance
Parameter
RθJC RθJC RθCS RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
––– ––– ––– ––– –––
Typ.
––– ––– 0.50 ––– 2 (0.07)
Max.
2.1 3.5 ––– 80 –––
Units
°C/W
g (oz)
www.irf.com
1
7/11/2000
IRG4BC20FD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Collector-to-Emitter Breakdown VoltageS 600 — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.72 VCE(on) Collector-to-Emitter Saturation Voltage — 1.66 — 2.06 — 1.76 VGE(th) Gate Threshold Voltage 3.0 — ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage — -11 gfe Forward Transconductance T 2.9 5.1 ICES Zero Gate Voltage Collector Current — — — — V FM Diode Forward Voltage Drop — 1.4 — 1.3 IGES Gate-to-Emitter Leakage Current — — V(BR)CES Max. Units Conditions — V VGE = 0V, IC = 250µA — V/°C VGE = 0V, IC = 1.0mA 2.0 IC = 9.0A V GE = 15V — V IC = 16A See Fig. 2, 5 — IC = 9.0A, TJ = 150°C 6.0 VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 250µA — S VCE = 100V, IC = 9.0A 250 µA VGE = 0V, VCE = 600V 1700 VGE = 0V, VCE = 600V, TJ = 150°C 1.7 V IC = 8.0A See Fig. 13 1.6 IC = 8.0A, TJ = 150°C ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres t rr Irr Q rr di (rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. — — — — — — — — — — — — — — — — — — — — — — — — — — — Typ. 27 4.2 9.9 43 20 240 150 0.25 0.64 0.89 41 22 320 290 1.35 7.5 540 37 7.0 37 55 3.5 4.5 65 124 240 210 Max. Units Conditions 40 IC = 9.0A 6.2 nC VCC = 400V See Fig. 8 15 VGE = 15V — TJ = 25°C — ns IC = 9.0A, VCC = 480V 360 VGE = 15V, RG = 50 Ω 220 Energy losses include "tail" and — diode reverse recovery. — mJ See Fig. 9, 10, 18 1.3 — TJ = 150°C, See Fig. 11, 18 — ns IC = 9.0A, VCC = 480V — VGE = 15V, RG = 50 Ω — Energy losses include "tail" and — mJ diode reverse recovery. — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz 55 ns TJ = 25°C See Fig. 90 TJ = 125°C 14 IF = 8.0A 5.0 A TJ = 25°C See Fig. 8.0 TJ = 125°C 15 VR = 200V 138 nC TJ = 25°C See Fig. 360 TJ = 125°C 16 di/dt = 200A/µs — A/µs TJ = 25°C See Fig. — TJ = 125°C 17
2
www.irf.com
IRG4BC20FD
14
For both:
12
LOAD CURRENT (A)
10
D uty cy cle: 50% TJ = 125 ° C T s ink = 90 ° C G ate drive as specified P ow e r Dis sip ation = 13 W
S q u a re w a v e : 6 0% of rate d volta ge
I
8
6
4
Id e a l d io d e s
2
0 0.1 1 10 100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
100
TJ = 25 o C TJ = 150 o C
10
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
TJ = 150 o C
10
TJ = 25 oC
1 1
V = 15V 20µs PULSE WIDTH
GE 10
1 5 6 7 8 9
V = 50V 5µs PULSE WIDTH
CC 10 11 12 13 14
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics www.irf.com
Fig. 3 - Typical Transfer Characteristics 3
IRG4BC20FD
16 3.0
12
VCE , Collector-to-Emitter Voltage(V)
V = 15V 80 us PULSE WIDTH
GE
IC = 18 A
Maximum DC Collector Current(A)
8
2.0
IC = 9.0 A 9A
4
IC = 4.5 A
0 25 50 75 100 125 150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , Case Temperature ( ° C)
TJ , Junction Temperature ( ° C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
10
Thermal Response (Z thJC )
1
0.50 0.20 0.10 0.05
0.1
0.02 0.01
SINGLE PULSE (THERMAL RESPONSE) 0.0001 0.001 0.01
0.01 0.00001
Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.1
P DM t1 t2 1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com
IRG4BC20FD
1000
800
VGE , Gate-to-Emitter Voltage (V)
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 9.0A
16
C, Capacitance (pF)
600
Cies
12
400
8
200
C oes C res
4
0 1 10 100
0 0 5 10 15 20 25 30
VCE , Collector-to-Emitter Voltage (V)
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
0.90
Total Switching Losses (mJ)
0.86
Total Switching Losses (mJ)
V CC = 480V V GE = 15V TJ = 25 ° C 0.88 I C = 9.0A
10
Ω RG = 50Ohm VGE = 15V VCC = 480V
IC = 18 A IC = 9.0 A 9
1
0.84
IC = 4.5 A
0.82
0.80
0.78 0 10 20 30 40 50
0.1 -60 -40 -20
0
20
40
60
80 100 120 140 160
Ω RG , Gate Resistance (Ohm)
TJ , Junction Temperature ( °C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com
Fig. 10 - Typical Switching Losses vs. Junction Temperature 5
IRG4BC20FD
3.0
2.0
I C , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
RG TJ VCC 2.5 VGE
= 50Ohm Ω = 150 ° C = 480V = 15V
100
VGE = 20V T J = 125 oC
1.5
10
1.0
0.5
0.0 0 4 8 12 16
SAFE OPERATING AREA
1 20 1 10 100 1000
I C , Collector-to-emitter Current (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
100
Fig. 12 - Turn-Off SOA
In s ta n ta n e o u s F o rw a rd C u rre n t - I F (A )
10
TJ = 1 50 ° C TJ = 1 25 ° C TJ = 25 ° C
1
0.1 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
F o rw a rd V o lta g e D ro p - V F M ( V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com
IRG4BC20FD
100 100
VR = 2 0 0 V TJ = 1 2 5 °C TJ = 2 5 ° C
80
VR = 2 0 0 V TJ = 1 2 5 ° C TJ = 2 5 °C
IF = 16 A
t rr - (ns)
60
I F = 8 .0A
I IR R M - (A )
I F = 1 6A
10
40
IF = 8 .0 A I F = 4.0 A
I F = 4 .0 A
20
0 100
d i f /d t - ( A / µ s )
1000
1 100
1000
di f /dt - ( A / µ s )
Fig. 14 - Typical Reverse Recovery vs. dif/dt
500
Fig. 15 - Typical Recovery Current vs. dif/dt
10000
VR = 2 0 0 V TJ = 1 2 5 °C TJ = 2 5 ° C
400
VR = 2 0 0 V TJ = 1 2 5 °C TJ = 2 5 ° C
300
d i(re c )M /d t - (A /µ s )
Q R R - (n C )
I F = 16 A
200
I F = 4.0 A
1000
IF = 8 .0 A I F = 1 6A
I F = 8 .0A
100
IF = 4.0 A
0 100 100 100
di f /dt - ( A / µ s )
1000
1000
d i f /d t - ( A / µ s )
Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com
Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7
IRG4BC20FD
Same ty pe device as D .U.T. 90% Vge +Vge
Vce 80% of Vce 430µF D .U .T. Ic 10% Vce Ic 5 % Ic td (o ff) tf 9 0 % Ic
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Eoff =
∫
t1 + 5 µ S Vce d VceicIc tdt t1
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T . 1 0 % +V g +Vg
trr Ic
Q rr =
∫
trr id ddt Ic t tx
tx 10% Vcc Vce Vcc 1 0 % Ic 9 0 % Ic D UT VO LTAG E AN D CU RRE NT Ip k Ic
1 0 % Irr V cc
V pk Irr
D IO D E R E C O V E R Y W A V E FO R M S td (o n ) tr 5% Vce t2 Vce d E o n = V ce ieIc t dt t1 t2 D IO D E R E V E R S E REC OVERY ENER GY t3 t4
∫
E re c =
t1
∫
t4 V d idIct dt Vd d t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
IRG4BC20FD
V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 6000µ F 100 V Vc*
D.U.T.
RL= 0 - 480V
480V 4 X IC @25°C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
www.irf.com
9
IRG4BC20FD
Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) R VCC=80%(VCES), VGE=20V, L=10µH, RG = 50Ω (figure 19) S Pulse width ≤ 80µs; duty factor ≤ 0.1%. T Pulse width 5.0µs, single shot.
Notes:
Case Outline TO-220AB
2 .8 7 (.1 1 3 ) 2 .6 2 (.1 0 3 ) 1 0 .5 4 (.41 5 ) 1 0 .2 9 (.40 5 )
3.78 (.149) 3.54 (.139) -A6.47 (.255 ) 6.10 (.240 ) 1.15 (.045) M IN
-B -
4.69 (.185) 4.20 (.165)
1.32 (.052) 1.22 (.048)
4 1 5 .2 4 (.6 0 0 ) 1 4 .8 4 (.5 8 4 ) 1 2 3
N O TE S : 1 D IM E N S IO N S & T O L E R A N C IN G P E R A N S I Y 14 .5 M , 1 9 8 2 . 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 D IM E N S IO N S A R E S H O W N M ILL IM E T E R S ( IN C H E S ) . 4 C O N F O R M S T O JE D E C O U T L IN E T O -2 2 0 A B .
3X
1 4 .0 9 (.5 5 5 ) 1 3 .4 7 (.5 3 0 )
3.96 ( .160 ) 3.55 ( .140 )
LEAD 1234-
A S S IG N M E N T S GA TE C O L LE C T O R E M IT T E R C O L LE C T O R
4.06 (.160 ) 3.55 (.140 )
0.93 ( .037 ) 0.69 ( .027 )
MBAM
1 .4 0 (.0 5 5 ) 3 X 1 .1 5 (.0 4 5 ) 2 .5 4 (.1 0 0) 2X
3X
3X
0.55 (.022) 0.46 (.018)
0 .3 6 (.01 4 )
2.92 (.115) 2.64 (.104)
CONFORMS TO JEDEC OUTLINE TO-220AB
D im e ns io ns in M illim e ters a nd ( In c he s )
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN: 16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 7/00
10
www.irf.com