0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRG4BC20KDPBF

IRG4BC20KDPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRG4BC20KDPBF - INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE - International...

  • 数据手册
  • 价格&库存
IRG4BC20KDPBF 数据手册
PD -94907 IRG4BC20KDPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features C Short Circuit Rated UltraFast IGBT VCES = 600V • Short Circuit Rated UltraFast: Optimized for high operating frequencies >5.0 kHz , and Short Circuit Rated to 10µs @ 125°C, VGE = 15V • Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than previous generation • IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations • Industry standard TO-220AB package • Lead-Free G E VCE(on) typ. = 2.27V @VGE = 15V, IC = 9.0A n-channel Benefits • Latest generation 4 IGBTs offer highest power density motor controls possible • HEXFREDTM diodes optimized for performance with IGBTs. Minimized recovery characteristics reduce noise, EMI and switching losses • This part replaces the IRGBC20KD2 and IRGBC20MD2 products • For hints see design tip 97003 TO-220AB Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM tsc VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current  Clamped Inductive Load Current ‚ Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. 600 16 9.0 32 32 7.0 32 10 ± 20 60 24 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m) Units V A µs V W °C Thermal Resistance RθJC RθJC RθCS RθJA Wt Parameter Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. ––– ––– ––– ––– ––– Typ. ––– ––– 0.50 ––– 2 (0.07) Max. 2.1 3.5 ––– 80 ––– Units °C/W g (oz) www.irf.com 1 12/23/03 IRG4BC20KDPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Max. Units Collector-to-Emitter Breakdown Voltageƒ 600 — — V Temperature Coeff. of Breakdown Voltage — 0.49 — V/°C Collector-to-Emitter Saturation Voltage — 2.27 2.8 — 3.01 — V — 2.43 — Gate Threshold Voltage 3.0 — 6.0 Temperature Coeff. of Threshold Voltage — -10 — mV/°C Forward Transconductance „ 2.9 4.3 — S Zero Gate Voltage Collector Current — — 250 µA — — 1000 Diode Forward Voltage Drop — 1.4 1.7 V — 1.3 1.6 Gate-to-Emitter Leakage Current — — ±100 nA Conditions VGE = 0V, IC = 250µA VGE = 0V, IC = 1.0mA IC = 9.0A VGE = 15V See Fig. 2, 5 IC = 16A IC = 9.0A, TJ = 150°C VCE = VGE, IC = 250µA VCE = VGE, IC = 250µA VCE = 100V, IC = 9.0A VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C IC = 8.0A See Fig. 13 IC = 8.0A, TJ = 150°C VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc t d(on) tr td(off) tf Eon Eoff Ets tsc t d(on) tr td(off) tf Ets LE Cies Coes Cres trr Irr Qrr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. — — — — — — — — — — 10 — — — — — — — — — — — — — — — — — Typ. Max. Units Conditions 34 51 IC = 9.0A 4.9 7.4 nC VCC = 400V See Fig.8 14 21 VGE = 15V 54 — 34 — TJ = 25°C ns 180 270 IC = 9.0A, VCC = 480V 72 110 VGE = 15V, RG = 50Ω 0.34 — Energy losses include "tail" 0.30 — mJ and diode reverse recovery 0.64 0.96 See Fig. 9,10,14 — — µs VCC = 360V, TJ = 125°C VGE = 15V, RG = 50Ω , VCPK < 500V 51 — TJ = 150°C, See Fig. 11,14 37 — IC = 9.0A, VCC = 480V ns 220 — VGE = 15V, RG = 50Ω 160 — Energy losses include "tail" 0.85 — mJ and diode reverse recovery 7.5 — nH Measured 5mm from package 450 — VGE = 0V 61 — pF VCC = 30V See Fig. 7 14 — ƒ = 1.0MHz 37 55 ns TJ = 25°C See Fig. 55 90 TJ = 125°C 14 IF = 8.0A 3.5 5.0 A TJ = 25°C See Fig. 4.5 8.0 TJ = 125°C 15 VR = 200V 65 138 nC TJ = 25°C See Fig. 124 360 TJ = 125°C 16 di/dt = 200Aµs 240 — A/µs TJ = 25°C See Fig. 210 — TJ = 125°C 17 2 www.irf.com IRG4BC20KDPbF 10 For both: 8 LOAD CURRENT (A) Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified Power Dissipation = 13 W Square wave: 60% of rated voltage 6 4 I 2 Ideal diodes 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 100 I C , Collector-to-Emitter Current (A) TJ = 25 o C TJ = 150 o C 10 I C, Collector-to-Emitter Current (A) 10 TJ = 150 o C TJ = 25 oC V CC = 50V 5µs PULSE WIDTH 5 10 15 20 1 V GE = 15V 20µs PULSE WIDTH 1 10 1 VCE , Collector-to-Emitter Voltage (V) VGE , Gate-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics www.irf.com 3 IRG4BC20KDPbF 20 5.0 VCE , Collector-to-Emitter Voltage(V) VGE = 15V 80 us PULSE WIDTH IC = 18 A Maximum DC Collector Current(A) 15 4.0 10 3.0 IC = 9.0A 9A 2.0 5 IC = 4.5 A 0 25 50 75 100 125 150 TC , Case Temperature ( ° C) 1.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature 10 Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.10 0.05 P DM t1 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t2 0.1 0.02 0.01 0.01 0.00001 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4BC20KDPbF 800 VGE , Gate-to-Emitter Voltage (V) 100 VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc 20 VCC = 400V I C = 9.0A C, Capacitance (pF) 600 16 Cies 400 12 8 200 Coes Cres 4 0 1 10 0 VCE , Collector-to-Emitter Voltage (V) 0 10 20 30 40 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0.8 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 10 Total Switching Losses (mJ) Total Switching Losses (mJ) V CC = 480V V GE = 15V TJ = 25 ° C I C = 9.0A RG 50Ohm =Ω VGE = 15V VCC = 480V IC = 18 A 0.7 1 IC = 9.0A 9A IC = 4.5 A 0.6 0.5 0 10 20 30 40 50 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 RG ,, Gate Resistance ( (Ohm) RG Gate Resistance Ω ) TJ , Junction Temperature (° C ) Fig. 9 - Typical Switching Losses vs. Gate Resistance Fig. 10 - Typical Switching Losses vs. Junction Temperature www.irf.com 5 IRG4BC20KDPbF 3.0 2.0 I C , Collector-to-Emitter Current (A) Total Switching Losses (mJ) RG TJ VCC VGE = 50 Ω Ohm = 150° C = 480V = 15V 100 VGE = 20V T J = 125 o C 10 1.0 0.0 0 4 8 12 16 20 1 SAFE OPERATING AREA 1 10 100 1000 I C, Collector-to-emitter Current (A) VCE, Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 100 Fig. 12 - Turn-Off SOA Instantaneous Forward Current - I F (A) 10 TJ = 150°C TJ = 125°C TJ = 25°C 1 0.1 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current Forward Voltage Drop - V FM (V) 6 www.irf.com IRG4BC20KDPbF 100 100 VR = 200V TJ = 125°C TJ = 25°C 80 VR = 200V TJ = 125°C TJ = 25°C IF = 16A I F = 8.0A I IRRM - (A) t rr - (ns) 60 10 I F = 16A IF = 8.0A I F = 4.0A 40 I F = 4.0A 20 0 100 di f /dt - (A/µs) 1000 1 100 di f /dt - (A/µs) 1000 Fig. 14 - Typical Reverse Recovery vs. dif/dt 500 Fig. 15 - Typical Recovery Current vs. dif/dt 10000 VR = 200V TJ = 125°C TJ = 25°C 400 VR = 200V TJ = 125°C TJ = 25°C 300 di(rec)M/dt - (A/µs) Q RR - (nC) I F = 16A 200 1000 IF = 4.0A IF = 8.0A I F = 16A I F = 8.0A 100 IF = 4.0A 0 100 100 100 di f /dt - (A/µs) 1000 di f /dt - (A/µs) 1000 Fig. 16 - Typical Stored Charge vs. dif/dt Fig. 17 - Typical di(rec)M/dt vs. dif/dt www.irf.com 7 IRG4BC20KDPbF Same type device as D.U.T. 90% Vge +Vge Vce 80% of Vce 430µF D.U.T. Ic 10% Vce 90% Ic Ic 5% Ic td(off) tf Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf Eoff = ∫ t1+5µS Vce Ic Vceic dtdt t1 t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg +Vg Ic trr Qrr = ∫ trr id dt Ic dt tx tx 10% Vcc Vce Vcc 10% Ic 90% Ic DUT VOLTAGE AND CURRENT Ipk 10% Irr Vcc Vpk Irr Ic DIODE RECOVERY WAVEFORMS td(on) tr 5% Vce t2 Vce Ic Eon = Vce ie dtdt t1 t2 DIODE REVERSE RECOVERY ENERGY t3 ∫ t4 Erec = Vd idIc dt Vd dt t3 t1 ∫ t4 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr 8 www.irf.com IRG4BC20KDPbF Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit L 1000V 50V 6000µF 100V Vc* D.U.T. RL= 0 - 480V 480V 4 X IC @25°C Figure 19. Clamped Inductive Load Test Circuit Figure 20. Pulsed Collector Current Test Circuit www.irf.com 9 IRG4BC20KDPbF Notes:  Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) ‚ VCC=80%(VCES), VGE=20V, L=10µH, RG= 50Ω (figure 19) ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%. „ Pulse width 5.0µs, single shot. TO-220AB Package Outline 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 3 LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 2 1- GATE- DRAIN 1- GATE 32- DRAINSOURCE 2- COLLECTOR 3- SOURCE 3- EMITTER 4 - DRAIN LEAD ASSIGNMENTS HEXFET 14.09 (.555) 13.47 (.530) 4- DRAIN 4.06 (.160) 3.55 (.140) 4- COLLECTOR 3X 3X 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) M BAM 3X 0.55 (.022) 0.46 (.018) 0.36 (.014) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 2.92 (.115) 2.64 (.104) 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMPL E : T HIS IS AN IR F 1010 LOT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T HE AS S E MB L Y L INE "C" INT E R NAT IONAL R E CT IFIE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R Note: "P" in assembly line position indicates "Lead-Free" DAT E CODE YEAR 7 = 1997 WE E K 19 L INE C Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/03 10 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/
IRG4BC20KDPBF 价格&库存

很抱歉,暂时无法提供与“IRG4BC20KDPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货