PD -94907
IRG4BC20KDPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
C
Short Circuit Rated UltraFast IGBT
VCES = 600V
Short Circuit Rated UltraFast: Optimized for high operating frequencies >5.0 kHz , and Short Circuit Rated to 10µs @ 125°C, VGE = 15V Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than previous generation IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations Industry standard TO-220AB package Lead-Free
G E
VCE(on) typ. = 2.27V
@VGE = 15V, IC = 9.0A
n-channel
Benefits
Latest generation 4 IGBTs offer highest power density motor controls possible HEXFREDTM diodes optimized for performance with IGBTs. Minimized recovery characteristics reduce noise, EMI and switching losses This part replaces the IRGBC20KD2 and IRGBC20MD2 products For hints see design tip 97003
TO-220AB
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM tsc VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw.
Max.
600 16 9.0 32 32 7.0 32 10 ± 20 60 24 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbfin (1.1 Nm)
Units
V
A
µs V W °C
Thermal Resistance
RθJC RθJC RθCS RθJA Wt
Parameter
Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
Typ.
0.50 2 (0.07)
Max.
2.1 3.5 80
Units
°C/W
g (oz)
www.irf.com
1
12/23/03
IRG4BC20KDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES
Parameter Min. Typ. Max. Units Collector-to-Emitter Breakdown Voltage 600 V Temperature Coeff. of Breakdown Voltage 0.49 V/°C Collector-to-Emitter Saturation Voltage 2.27 2.8 3.01 V 2.43 Gate Threshold Voltage 3.0 6.0 Temperature Coeff. of Threshold Voltage -10 mV/°C Forward Transconductance 2.9 4.3 S Zero Gate Voltage Collector Current 250 µA 1000 Diode Forward Voltage Drop 1.4 1.7 V 1.3 1.6 Gate-to-Emitter Leakage Current ±100 nA
Conditions VGE = 0V, IC = 250µA VGE = 0V, IC = 1.0mA IC = 9.0A VGE = 15V See Fig. 2, 5 IC = 16A IC = 9.0A, TJ = 150°C VCE = VGE, IC = 250µA VCE = VGE, IC = 250µA VCE = 100V, IC = 9.0A VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C IC = 8.0A See Fig. 13 IC = 8.0A, TJ = 150°C VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc t d(on) tr td(off) tf Eon Eoff Ets tsc t d(on) tr td(off) tf Ets LE Cies Coes Cres trr Irr Qrr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. 10 Typ. Max. Units Conditions 34 51 IC = 9.0A 4.9 7.4 nC VCC = 400V See Fig.8 14 21 VGE = 15V 54 34 TJ = 25°C ns 180 270 IC = 9.0A, VCC = 480V 72 110 VGE = 15V, RG = 50Ω 0.34 Energy losses include "tail" 0.30 mJ and diode reverse recovery 0.64 0.96 See Fig. 9,10,14 µs VCC = 360V, TJ = 125°C VGE = 15V, RG = 50Ω , VCPK < 500V 51 TJ = 150°C, See Fig. 11,14 37 IC = 9.0A, VCC = 480V ns 220 VGE = 15V, RG = 50Ω 160 Energy losses include "tail" 0.85 mJ and diode reverse recovery 7.5 nH Measured 5mm from package 450 VGE = 0V 61 pF VCC = 30V See Fig. 7 14 = 1.0MHz 37 55 ns TJ = 25°C See Fig. 55 90 TJ = 125°C 14 IF = 8.0A 3.5 5.0 A TJ = 25°C See Fig. 4.5 8.0 TJ = 125°C 15 VR = 200V 65 138 nC TJ = 25°C See Fig. 124 360 TJ = 125°C 16 di/dt = 200Aµs 240 A/µs TJ = 25°C See Fig. 210 TJ = 125°C 17
2
www.irf.com
IRG4BC20KDPbF
10
For both:
8
LOAD CURRENT (A)
Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified
Power Dissipation = 13 W Square wave: 60% of rated voltage
6
4
I
2
Ideal diodes
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
100
I C , Collector-to-Emitter Current (A)
TJ = 25 o C TJ = 150 o C
10
I C, Collector-to-Emitter Current (A)
10
TJ = 150 o C
TJ = 25 oC V CC = 50V 5µs PULSE WIDTH
5 10 15 20
1
V GE = 15V 20µs PULSE WIDTH
1 10
1
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4BC20KDPbF
20
5.0
VCE , Collector-to-Emitter Voltage(V)
VGE = 15V 80 us PULSE WIDTH IC = 18 A
Maximum DC Collector Current(A)
15
4.0
10
3.0
IC = 9.0A 9A
2.0
5
IC = 4.5 A
0
25
50
75
100
125
150
TC , Case Temperature ( ° C)
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
10
Thermal Response (Z thJC )
1
D = 0.50 0.20 0.10 0.05 P DM t1 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t2
0.1
0.02 0.01
0.01 0.00001
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC20KDPbF
800
VGE , Gate-to-Emitter Voltage (V)
100
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 9.0A
C, Capacitance (pF)
600
16
Cies
400
12
8
200
Coes Cres
4
0
1
10
0
VCE , Collector-to-Emitter Voltage (V)
0
10
20
30
40
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
0.8
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
10
Total Switching Losses (mJ)
Total Switching Losses (mJ)
V CC = 480V V GE = 15V TJ = 25 ° C I C = 9.0A
RG 50Ohm =Ω VGE = 15V VCC = 480V IC = 18 A
0.7
1
IC = 9.0A 9A IC = 4.5 A
0.6
0.5
0
10
20
30
40
50
0.1 -60 -40 -20
0
20
40
60
80 100 120 140 160
RG ,, Gate Resistance ( (Ohm) RG Gate Resistance Ω )
TJ , Junction Temperature (° C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4BC20KDPbF
3.0
2.0
I C , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
RG TJ VCC VGE
= 50 Ω Ohm = 150° C = 480V = 15V
100
VGE = 20V T J = 125 o C
10
1.0
0.0
0
4
8
12
16
20
1
SAFE OPERATING AREA
1 10 100 1000
I C, Collector-to-emitter Current (A)
VCE, Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
100
Fig. 12 - Turn-Off SOA
Instantaneous Forward Current - I F (A)
10
TJ = 150°C TJ = 125°C TJ = 25°C
1
0.1 0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
Forward Voltage Drop - V FM (V)
6
www.irf.com
IRG4BC20KDPbF
100
100
VR = 200V TJ = 125°C TJ = 25°C
80
VR = 200V TJ = 125°C TJ = 25°C
IF = 16A I F = 8.0A
I IRRM - (A)
t rr - (ns)
60
10
I F = 16A IF = 8.0A I F = 4.0A
40
I F = 4.0A
20
0 100
di f /dt - (A/µs)
1000
1 100
di f /dt - (A/µs)
1000
Fig. 14 - Typical Reverse Recovery vs. dif/dt
500
Fig. 15 - Typical Recovery Current vs. dif/dt
10000
VR = 200V TJ = 125°C TJ = 25°C
400
VR = 200V TJ = 125°C TJ = 25°C
300
di(rec)M/dt - (A/µs)
Q RR - (nC)
I F = 16A
200
1000
IF = 4.0A IF = 8.0A I F = 16A
I F = 8.0A
100
IF = 4.0A
0 100
100 100
di f /dt - (A/µs)
1000
di f /dt - (A/µs)
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
www.irf.com
7
IRG4BC20KDPbF
Same type device as D.U.T.
90% Vge +Vge
Vce
80% of Vce
430µF D.U.T.
Ic 10% Vce 90% Ic Ic 5% Ic td(off) tf
Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Eoff =
∫
t1+5µS Vce Ic Vceic dtdt
t1
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T. 10% +Vg +Vg
Ic
trr
Qrr =
∫
trr id dt Ic dt tx
tx 10% Vcc Vce Vcc 10% Ic 90% Ic DUT VOLTAGE AND CURRENT Ipk
10% Irr Vcc
Vpk
Irr
Ic DIODE RECOVERY WAVEFORMS
td(on)
tr
5% Vce t2 Vce Ic Eon = Vce ie dtdt t1 t2 DIODE REVERSE RECOVERY ENERGY t3
∫
t4 Erec = Vd idIc dt Vd dt t3
t1
∫
t4
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
IRG4BC20KDPbF
Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 6000µF 100V Vc*
D.U.T.
RL= 0 - 480V
480V 4 X IC @25°C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
www.irf.com
9
IRG4BC20KDPbF
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG= 50Ω (figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot.
TO-220AB Package Outline
2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 2 1- GATE- DRAIN 1- GATE 32- DRAINSOURCE 2- COLLECTOR 3- SOURCE 3- EMITTER 4 - DRAIN
LEAD ASSIGNMENTS
HEXFET
14.09 (.555) 13.47 (.530)
4- DRAIN
4.06 (.160) 3.55 (.140)
4- COLLECTOR
3X 3X 1.40 (.055) 1.15 (.045)
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
2.92 (.115) 2.64 (.104)
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMPL E : T HIS IS AN IR F 1010 LOT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T HE AS S E MB L Y L INE "C" INT E R NAT IONAL R E CT IFIE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R
Note: "P" in assembly line position indicates "Lead-Free"
DAT E CODE YEAR 7 = 1997 WE E K 19 L INE C
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/03
10
www.irf.com
Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/