PD -94908
IRG4BC20MDPbF
Features
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
C
Short Circuit Rated Fast IGBT
VCES = 600V
• Rugged: 10µsec short circuit capable at VGS=15V • Low VCE(on) for 4 to 10kHz applications • IGBT Co-packaged with ultra-soft-recovery antiparallel diode • Industry standard TO-220AB package • Lead-Free • Offers highest efficiency and short circuit capability for intermediate applications • Provides best efficiency for the mid range frequency (4 to 10kHz) • Optimized for Appliance Motor Drives, Industrial (Short Circuit Proof) Drives and Intermediate Frequency Range Drives • High noise immune "Positive Only" gate driveNegative bias gate drive not necessary • For Low EMI designs- requires little or no snubbing • Single Package switch for bridge circuit applications • Compatible with high voltage Gate Driver IC's • Allows simpler gate drive Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C tsc IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Short Circuit Withstand Time Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw.
G E
VCE(on) typ. = 1.85V
@VGE = 15V, IC = 11A
Benefits
n-channel
TO-220AB
Absolute Maximum Ratings
Max.
600 18 11 36 36 7.0 10 36 ± 20 60 24 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m)
Units
V
A
µs A V W °C
Thermal Resistance
RθJC RθJC RθCS RθJA Wt
Parameter
Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
-------------------------
Typ.
----------0.50 ----2 (0.07)
Max.
2.1 2.5 -----80 ------
Units
°C/W
g (oz)
www.irf.com
1
3/6/01
IRG4BC20MDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage ---VCE(on) Collector-to-Emitter Saturation Voltage ---------VGE(th) Gate Threshold Voltage 4.0 ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage ---gfe Forward Transconductance 3.0 ICES Zero Gate Voltage Collector Current ------VFM Diode Forward Voltage Drop ------IGES Gate-to-Emitter Leakage Current ---V(BR)CES Typ. ---0.67 1.85 2.46 2.07 ----11 3.6 ------1.4 1.3 ---Max. Units Conditions ---V VGE = 0V, IC = 250µA ---- V/°C VGE = 0V, I C = 1.0mA 2.1 IC = 11A VGE = 15V ---V IC = 18A See Fig. 2, 5 ---IC = 11A, TJ = 150°C 6.5 VCE = VGE, IC = 250µA ---- mV/°C VCE = VGE, IC = 250µA ---S VCE = 100V, IC = 11A 250 µA VGE = 0V, VCE = 600V 2500 VGE = 0V, VCE = 600V, TJ = 150°C 1.7 V IC = 8.0A See Fig. 13 1.6 IC = 8.0A, TJ = 150°C ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Irr Q rr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Min. ---------------------------------------------------------------Diode Peak Reverse Recovery Current ------Diode Reverse Recovery Charge ------Diode Peak Rate of Fall of Recovery ---During tb ---Typ. 39 5.3 20 21 37 463 340 0.41 2.03 2.44 19 41 590 600 3.49 7.5 460 54 14 37 55 3.5 4.5 65 124 240 210 Max. Units Conditions 59 IC = 11A 8.0 nC VCC = 400V See Fig. 8 30 VGE = 15V ---TJ = 25°C ---ns IC = 11A, VCC = 480V 690 VGE = 15V, RG = 50Ω 510 Energy losses include "tail" and ---diode reverse recovery. ---mJ See Fig. 9, 10, 11, 18 3.7 ---TJ = 150°C, See Fig. 9, 10, 11, 18 ---ns IC = 6.5A, VCC = 480V ---VGE = 15V, RG = 50Ω ---Energy losses include "tail" and ---mJ diode reverse recovery. ---nH Measured 5mm from package ---VGE = 0V ---pF VCC = 30V See Fig. 7 ---ƒ = 1.0MHz 55 ns TJ = 25°C See Fig. 90 TJ = 125°C 14 IF = 8.0A 5.0 A TJ = 25°C See Fig. 8.0 TJ = 125°C 15 VR = 200V 138 nC TJ = 25°C See Fig. 360 TJ = 125°C 16 di/dt 200A/µs ---- A/µs TJ = 25°C See Fig. ---TJ = 125°C 17
2
www.irf.com
IRG4BC20MDPbF
12
10
Load Current ( A )
8
Duty cycle : 50% Tj = 125°C Tsink = 90°C Gate drive as specified Turn-on losses include effects of reverse recovery Power Dissipation = 13W
60% of rated voltage
6
4
Ideal diodes
2
0 0.1 1 10 100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
100
IC , Collector-to Emitter Current (A)
I C , Collector-to-Emitter Current (A)
10
10
TJ = 150 °C
1
T J = 150°C
TJ = 25 °C
1
TJ = 25°C VGE= 15V 20µs PULSE WIDTH
0.1 0.1
1.0 VCE , Collector-to-Emitter Voltage (V)
10.0
0.1
V CC = 50V 5µs PULSE WIDTH
6 8 10 12 14 16
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4BC20MDPbF
20
4.0 VGE = 15V 80µs PULSE WIDTH
VCE , Collector-to Emitter Voltage (V)
Maximum DC Collector Current(A)
IC = 22A
15
3.0
10
2.0
IC = 11A
5
IC = 5.5A
0
1.0
25
50
75
100
125
150
-60 -40 -20
0
20
40
60
80 100 120 140
TC , Case Temperature ( °C)
TJ , Junction Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
10
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
Thermal Response (Z thJC )
1
D = 0.50 0.20 0.10 0.05 PDM t1 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = t 1 / t2 2. Peak T = PDM x Z thJC + TC J 0.0001 0.001 0.01 0.1 1 t2
0.1
0.02 0.01
0.01 0.00001
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC20MDPbF
800
VGE , Gate-to-Emitter Voltage (V)
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 11A
C, Capacitance (pF)
600
16
Cies
400
12
8
200
Coes Cres
4
0
1
10
100
0
VCE , Collector-to-Emitter Voltage (V)
0
10
20
30
40
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
2.5 VCC = 480V VGE = 15V TJ = 25°C I C = 11A
100 RG = 50Ω VGE = 15V VCC = 480V 10 IC = 22A IC = 11A IC = 5.5A 1
Total Switching Losses (mJ)
2.4
Total Switching Losses (mJ)
2.3 0 10 20 30 40 50
0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160
RG, Gate Resistance (Ω )
T J, Junction Temperature (°C)
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4BC20MDPbF
10.0 RG = 50Ω TJ = 150°C VGE = 15V
100
VGE = 20V T J = 125°
Total Switching Losses (mJ)
8.0
VCC = 480V
6.0
C, Capacitance(pF)
SAFE OPERATING AREA
10
4.0
2.0
0.0 5 10 15 20 25
1 1 10 100 1000
I C , Collector Current (A)
VDS, Drain-to-Source Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
100
Fig. 12 - Turn-Off SOA
Instantaneous Forward Current - I F (A)
10
TJ = 150°C TJ = 125°C TJ = 25°C
1
0.1 0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
Forward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4BC20MDPbF
100
100
VR = 200V TJ = 125°C TJ = 25°C
80
VR = 200V TJ = 125°C TJ = 25°C
IF = 16A
t rr - (ns)
60
I F = 8.0A
I IRRM - (A)
10
I F = 16A IF = 8.0A I F = 4.0A
40
I F = 4.0A
20
0 100
di f /dt - (A/µs)
1000
1 100
di f /dt - (A/µs)
1000
Fig. 14 - Typical Reverse Recovery vs. dif/dt
500
Fig. 15 - Typical Recovery Current vs. dif/dt
10000
VR = 200V TJ = 125°C TJ = 25°C
400
VR = 200V TJ = 125°C TJ = 25°C
300
di(rec)M/dt - (A/µs)
Q RR - (nC)
I F = 16A
200
1000
IF = 4.0A IF = 8.0A I F = 16A
I F = 8.0A
100
IF = 4.0A
0 100
100 100
di f /dt - (A/µs)
1000
di f /dt - (A/µs)
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
www.irf.com
7
IRG4BC20MDPbF
90% Vge +Vge
Same type device as D.U.T.
Vce
Ic
10% Vce
90% Ic Ic 5% Ic
80% of Vce
430µF D.U.T.
td(off) tf
Eoff =
∫
t1+5µS Vce ic dt
t1
Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1 t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T. 10% +Vg +Vg
Ic
trr
Qrr =
∫
trr id dt tx
tx 10% Vcc Vce Vcc 10% Ic 90% Ic DUT VOLTAGE AND CURRENT Ipk
10% Irr Vcc
Vpk
Irr
Ic DIODE RECOVERY WAVEFORMS
td(on)
tr
5% Vce t2 Eon = Vce ie dt t1 t2 DIODE REVERSE RECOVERY ENERGY t3
∫
t4 Erec = Vd id dt t3
t1
∫
t4
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
IRG4BC20MDPbF
Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 6000µF 100V Vc*
D.U.T.
RL= 0 - 480V
480V 4 X IC @25°C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
www.irf.com
9
IRG4BC20MDPbF
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG = 50Ω (figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot.
TO-220AB Package Outline
2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
H E X F E T- GATE 1 1234-
LEAD ASSIGNMENTS
L E A D A S S IG N M E N T S IG B T s , C o P A C K 1234G ATE CO LLE CTO R E M IT T E R CO LLE CTO R
14.09 (.555) 13.47 (.530)
G A T2 - DRAIN E D R A3 N SOURCE IS O U R- C E 4 DRAIN D R A IN
4.06 (.160) 3.55 (.140)
3X 3X 1.40 (.055) 1.15 (.045)
0.93 (.037) 0.69 (.027) M B A M
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
2.92 (.115) 2.64 (.104)
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E X AM P L E : T H I S I S A N IR F 1 0 1 0 L O T COD E 1789 AS S E M B L E D O N W W 1 9, 1 99 7 IN T H E A S S E M B L Y L IN E "C " IN T E R N A T IO N A L R E C T IF IE R L OGO AS S E M B L Y LOT CODE P AR T N U M B E R
N o t e : " P " in a s s e m b l y li n e p o s i t io n in d i c a t e s " L e a d - F r e e "
D AT E CO D E YE AR 7 = 1997 W EE K 19 L IN E C
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 12/03
10
www.irf.com
Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/