PD - 94773
IRG4BC30FD1
Fast CoPack IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH HYPERFAST DIODE
C
Features
Fast: optimized for medium operating frequencies (1-5 kHz in hard switching, >20kHz in resonant mode). Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3. IGBT co-packaged with Hyperfast FRED diodes for ultra low recovery characteristics. Industry standard TO-220AB package.
G E
VCES = 600V VCE(on) typ. = 1.59V
@VGE = 15V, IC = 17A
n-channel
Benefits
Generation 4 IGBT's offer highest efficiency available. IGBT's optimized for specific application conditions. FRED diodes optimized for performance with IGBT's. Minimized recovery characteristics require less / no snubbing.
TO-220AB
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM VGE PD @ TC = 25°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current
Max.
600 31 17 120 120 8 16 ±20 100 42 -55 to +150
Units
V A
d
c
Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Operating Junction and Storage Temperature Range Storage Temperature Range, for 10 sec. Mounting Torque, 6-32 or M3 Screw
V W
PD @ TC = 100°C Maximum Power Dissipation
°C 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m)
Thermal / Mechanical Characteristics
Parameter
RθJC RθJC RθCS RθJA Wt Junction-to-Case- IGBT Junction-to-Case- Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
––– ––– ––– ––– –––
Typ.
––– ––– 0.50 ––– 2.0 (0.07)
Max.
1.2 2.0 ––– 80 –––
Units
°C/W
g (oz.)
www.irf.com
1
09/03/03
IRG4BC30FD1
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
Collector-to-Emitter Breakdown Voltage
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
e
Min. Typ. Max. Units
600 — — — — 3.0 — 0.69 1.59 1.99 1.7 — -11 10 — — 2.0 1.3 — — — 1.8 — — 6.0 — — 250 2500 2.4 1.8 ±100 nA V V V
Conditions
VGE = 0V, IC = 250µA VGE = 15V See Fig. 2, 5
V/°C VGE = 0V, IC = 1mA IC = 17A V IC = 31A IC = 17A, TJ = 150°C VCE = VGE, IC = 250µA mV/°C VCE = VGE, IC = 250µA S VCE = 100V, IC = 17A µA VGE = 0V, VCE = 600V
VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES
Collector-to-Emitter Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Zero Gate Voltage Collector Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current
f
— 6.1 — — — — —
VGE = 0V, VCE = 600V, TJ = 150°C IF = 8.0A IF = 8.0A, TJ = 150°C VGE = ±20V See Fig. 13
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Irr Qrr di(rec)M/dt Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb
Min. Typ. Max. Units
— — — — — — — — — — — — — — — — — — — — — — — — — — 57 10 21 22 24 250 160 370 1420 1800 21 25 400 340 3280 7.5 1170 100 11 46 85 4.8 8.5 110 410 260 270 62 12 24 — — 320 210 — — 2290 — — — — — — — — — 61 93 6.5 10 190 550 — — nC A ns pF µJ nH ns TJ = 150°C µJ ns nC IC = 17A VCC = 400V VGE = 15V TJ = 25°C
Conditions
See Fig. 8
IC = 17A, VCC = 480V VGE = 15V, RG = 23Ω Energy losses inlcude "tail" and diode reverse recovery. See Fig. 9, 10, 11, 18 See Fig. 9,10,11,18 IC = 17A, VCC = 480V VGE = 15V, RG = 23Ω Energy losses inlcude "tail" and diode reverse recovery. Measured 5mm from package VGE = 0V VCC = 30V f = 1.0MHz TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C See Fig. 14 See Fig. 15 See Fig. 16 See Fig. 17 di/dt 200A/µs VR = 200V IF = 12A See Fig. 7
A/µs TJ = 25°C TJ = 125°C
2
www.irf.com
IRG4BC30FD1
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
Fig. 1 - Typical Load Current vs. Frequency
1000
1000
IC , Collector-to-Emitter Current (A)
100
TJ = 25°C
IC , Collector-to-Emitter Current (A)
100
TJ = 150°C
TJ = 150°C TJ = 25°C
10
10
1 1
V GE = 15V 20µs PULSE WIDTH A
10
1 5 6 7 8 9
V CC = 50V 5µs PULSE WIDTH A
10 11 12 13
VCE , Collector-to-Emitter Voltage (V)
VGE, Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics www.irf.com
Fig. 3 - Typical Transfer Characteristics 3
IRG4BC30FD1
40
V GE = 15V
2.5
VCE , Collector-to-Emitter Voltage (V)
VGE = 15V 80µs PULSE WIDTH I C = 34A
Maximum DC Collector Current (A)
30
2.0
20
I C = 17A
1.5
10
I C = 8.5A
0 25 50 75 100 125 150
1.0 -60 -40 -20 0 20 40 60 80
A
100 120 140 160
TC , Case Temperature (°C)
TJ , Junction Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
10
Thermal Response (Z thJC )
1
D = 0.50
0.20 0.10
P DM
0.1
0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE)
t
1 t 2
Notes: 1. Duty factor D = t
1
/t
2
0.01 0.00001
2. Peak TJ = PDM x Z thJC + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com
IRG4BC30FD1
2000 1800 1600
C oes = C ce + C gc
VGE, Gate-to-Emitter Voltage (V)
VGS = 0V, f = 1 MHZ C ies = C ge + C gd, C ce SHORTED C res = C gc
14 12 10 8 6 4 2 0
VCC = 400V IC = 17A
Capacitance (pF)
1400 1200 1000 800 600 400 200 0 1 10 100 1000
Cies
Coes
Cres
0 10 20 30 40 50 60
VCE, Collector-toEmitter-Voltage(V)
Q G, Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
2000 VCE = 480V VGE = 15V
9000 8000
RG = 22Ω
Ã
IC = 34A
Total Swiching Losses (mJ)
Total Swiching Losses (mJ)
1900
TJ = 25°C I C = 17A
7000 6000 5000 4000 3000 2000 1000
VGE = 15V VCC = 480V
1800
IC = 17A IC = 8.5A
1700
1600 0 10 20 30 40 50
0 -60 -40 -20 0 20 40 60 80 100 120 140 160
RG, Gate Resistance (Ω)
T J, Juntion Temperature (°C)
Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com
Fig. 10 - Typical Switching Losses vs. Junction Temperature 5
IRG4BC30FD1
8000 R G = 22Ω 7000 TJ = 150°C VCE= 480V VGE = 15V
1000
6000 5000 4000 3000 2000 1000 0
I C , Collector-to-Emitter Current (A)
VGE = 20V GE TJ = 125°C
Total Swiching Losses (mJ)
100
SAFE OPERATING AREA
10
10
20
30
40
1 1 10 100 1000
IC, Collecto-to-Emitter (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
100
Fig. 12 - Turn-Off SOA
Instantaneous Forward Current - I F (A)
10
T = 175˚C J T = 150˚C J T = 25˚C J
1
0.1 0 1 2 3 4
Forward Voltage Drop - VFM (V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com
IRG4BC30FD1
200 175 150
IF V = 390V R T = 25°C _____ J T = 125°C ---------J
20
V = 390V R T = 25°C _____ J T = 125°C ---------J
15 = 16A
125
IF = 8A
100 75 50 25 0 100 200 300 400 500 600 700 800 900 1000 diF /dt (A/µs)
IRRM (A)
trr (ns)
10
5
IF
= 16A
IF = 8A
0 100 200 300 400 500 600 700 800 900 1000 diF /dt (A/µs)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
1000 900 800 700 600
V = 390V R T = 25°C _____ J T = 125°C ---------J IF
Fig. 15 - Typical Recovery Current vs. dif/dt
1400
V = 390V R T = 25°C _____ J T = 125°C ---------J
= 16A 1200
IF = 8A
1000
di(rec)M / dt (A/µs)
IF = 8A 800
Qrr (nC)
500 400 300 200
600
400
IF
= 16A
200 100 0 100 200 300 400 500 600 700 800 900 1000 diF /dt (A/µs) 0 100 200 300 400 500 600 700 800 900 1000 diF /dt (A/µs)
Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com
Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7
IRG4BC30FD1
90% Vge +Vge
Same type device as D.U.T.
Vce
80% of Vce
430µF D.U.T.
Ic 10% Vce Ic 5% Ic td(off) tf 90% Ic
Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Eoff =
∫
t1+5µS Vce Ic Vceic dtdt
t1
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T. 10% +Vg +Vg
trr Ic
Qrr =
∫
trr id dt Ic dt tx
tx 10% Vcc Vce 10% Ic 90% Ic DUT VOLTAGE AND CURRENT Ipk Ic
10% Irr Vcc
Vpk Irr
Vcc
DIODE RECOVERY WAVEFORMS td(on) tr 5% Vce t2 Eon = Vce ieIc dt Vce dt t1 t2 DIODE REVERSE RECOVERY ENERGY t3
∫
t4 Erec = Vd idIc dt Vd dt t3
∫
t1
t4
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
IRG4BC30FD1
Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Fig.18e - Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 6000µF 100V Vc*
D.U.T.
RL= 0 - 480V
480V 4 X IC @25°C
Fig. 19 - Clamped Inductive Load Test Circuit
Fig. 20 - Pulsed Collector Current Test Circuit
www.irf.com
9
IRG4BC30FD1
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN
14.09 (.555) 13.47 (.530)
4.06 (.160) 3.55 (.140)
3X 3X 1.40 (.055) 1.15 (.045)
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
2.92 (.115) 2.64 (.104)
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
EXAMPLE : THIS IS AN IRF1010 WITH ASSEMBLY LOT CODE 9B1M
A
INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE
PART NUMBER IRF1010 9246 9B 1M
DATE CODE (YYWW) YY = YEAR WW = WEEK
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20). VCC=80%(VCES), VGE=20V, L=10µH, RG = 23Ω (figure 19). Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot.
Energy losses include "tail" and diode reverse recovery, using Diode FD100H06A5. TO-220 package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/03
10
www.irf.com